Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Machine learning modeling of lake chlorophyll in a data-scarce region (Northern Patagonia, Chile): insights for environmental monitoring
Indexado
WoS WOS:001385347300007
Scopus SCOPUS_ID:85213038906
DOI 10.1080/20442041.2024.2359329
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Among South American countries, Chile is highly susceptible to climate change impacts on water resources and ecosystems. Chilean lakes and rivers have been impacted by anthropogenic activities leading to chemical pollution and eutrophication. Concerns for conservation and management of water resources have led to the current development of regulations for environmental quality of Northern Patagonian lakes. In this context, we analyze historical limnological databases (1979-2022) for these lakes utilizing random forest (RF) models. After filtering, we retained data for 11 lakes including key variables of dissolved oxygen, conductivity, transparency, temperature, pH, total nitrogen, total phosphorus, and chlorophyll a. This dataset yielded robust results, accurately predicting chlorophyll a concentration. Furthermore, we added lake geomorphological parameters, enhancing the performance of the model. Our study demonstrates the need to improve long-term monitoring programs, optimizing environmental data recording for efficient investment. We conclude that the studied lakes generally maintain their oligotrophic characteristics and are more sensitive to nitrogen than phosphorus loading. Our results highlight the need to implement adaptative management plans at the watershed level to regulate anthropogenic nitrogen contamination from agriculture, pisciculture, and urbanization. The features selected by RF, coupled with the assessment of historical trophic state variation, allow the establishment of permissible concentration thresholds for major nutrients and other sentinel variables, informing the development of regulations for environmental quality. Lastly, the enhanced performance of RF modeling that includes geographical variables demonstrates the need to standardize and integrate geographical data in monitoring practices.

Revista



Revista ISSN
Inland Waters 2044-2041

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Marine & Freshwater Biology
Limnology
Scopus
Aquatic Science
Water Science And Technology
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Caputo, Luciano - Universidad Austral de Chile - Chile
2 Molina, Cristian Rios - Universidad Austral de Chile - Chile
2 Rios Molina, Cristian - Universidad Austral de Chile - Chile
3 Ayllon-Arauco, Roxanna - Universidad Austral de Chile - Chile
4 Benavides, Ivan Felipe - UNIV NACL COLOMBIA - Colombia
Universidad Nacional de Colombia - Sede Palmira - Colombia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad Austral de Chile
Beca
Agencia Nacional de Investigación y Desarrollo
Subdirección de Capital Humano
BECA DE DOCTORADO NACIONAL (Ano 2022), ANID - Subdireccion de Capital Humano (Chile)
Proyecto InES I+D
InES I+D

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors thank Dr Carla Olmo for her constructive criticism in the initial version of the paper and the two anonymus reviewers. Cristian Rios Molina acknowledges support from BECA DE DOCTORADO NACIONAL (Ano 2022 - Folio 21221749), ANID - Subdireccion de Capital Humano (Chile). Luciano Caputo acknowledges the proyecto InES I+D INID210009. The authors dedicate this study to Marine Biologist Ana Ester Lorca Torres (QEPD), a highly esteemed colleague and friend whose career in freshwater quality analysis made significant contributions to research at the Universidad Austral de Chile and to Chilean Limnology in general.
The authors thank Dr Carla Olmo for her constructive criticism in the initial version of the paper and the two anonymus reviewers. Cristian R\u00EDos Molina acknowledges support from BECA DE DOCTORADO NACIONAL (A\u00F1o 2022 \u2013 Folio 21221749), ANID \u2013 Subdirecci\u00F3n de Capital Humano (Chile). Luciano Caputo acknowledges the proyecto InES I+D INID210009. The authors dedicate this study to Marine Biologist Ana Ester Lorca Torres (QEPD), a highly esteemed colleague and friend whose career in freshwater quality analysis made significant contributions to research at the Universidad Austral de Chile and to Chilean Limnology in general.

Muestra la fuente de financiamiento declarada en la publicación.