Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Effective Acoustic Model-Based Beamforming Training for Static and Dynamic Hri Applications
Indexado
WoS WOS:001341334400001
Scopus SCOPUS_ID:85207629041
DOI 10.3390/S24206644
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Human-robot collaboration will play an important role in the fourth industrial revolution in applications related to hostile environments, mining, industry, forestry, education, natural disaster and defense. Effective collaboration requires robots to understand human intentions and tasks, which involves advanced user profiling. Voice-based communication, rich in complex information, is key to this. Beamforming, a technology that enhances speech signals, can help robots extract semantic, emotional, or health-related information from speech. This paper describes the implementation of a system that provides substantially improved signal-to-noise ratio (SNR) and speech recognition accuracy to a moving robotic platform for use in human-robot interaction (HRI) applications in static and dynamic contexts. This study focuses on training deep learning-based beamformers using acoustic model-based multi-style training with measured room impulse responses (RIRs). The results show that this approach outperforms training with simulated RIRs or matched measured RIRs, especially in dynamic conditions involving robot motion. The findings suggest that training with a broad range of measured RIRs is sufficient for effective HRI in various environments, making additional data recording or augmentation unnecessary. This research demonstrates that deep learning-based beamforming can significantly improve HRI performance, particularly in challenging acoustic environments, surpassing traditional beamforming methods.

Revista



Revista ISSN
Sensors 1424-8220

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Chemistry, Analytical
Instruments & Instrumentation
Engineering, Electrical & Electronic
Electrochemistry
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Luzanto, Alejandro Hombre Universidad de Chile - Chile
2 Bohmer, Nicolas - Universidad de Chile - Chile
3 MAHU-SINCLAIR, RODRIGO MANUEL Hombre Universidad de Chile - Chile
4 Alvarado, Eduardo Hombre Universidad de Chile - Chile
5 Stern, Richard Hombre Carnegie Mellon Univ - Estados Unidos
College of Engineering - Estados Unidos
6 Yoma, Nestor Becerra Hombre Universidad de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Agencia Nacional de Investigación y Desarrollo
ANID/FONDECYT

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was funded by grant ANID/FONDECYT 1211946.
This research was funded by grant ANID/FONDECYT 1211946.

Muestra la fuente de financiamiento declarada en la publicación.