Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Modeling pulmonary perfusion and gas exchange in alveolar microstructures
Indexado
WoS WOS:001353455600001
Scopus SCOPUS_ID:85208076560
DOI 10.1016/J.CMA.2024.117499
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Pulmonary capillary perfusion and gas exchange are physiological processes that take place at the alveolar level and that are fundamental to sustaining life. Present-day computational simulations of these phenomena are based on low-dimensional mathematical models solved in idealized alveolar geometries, where the chemical reactions between O-2-CO2 and hemoglobin are simplified. While providing general insights, current modeling efforts fail to capture the complex chemical reactions that take place in pulmonary capillary blood flow on arbitrary geometries and ignore the crucial impact of microstructural morphology on pulmonary function. Here, we propose a coupled continuum perfusion and gas exchange model that captures complex gas and hemoglobin dynamics in realistic geometries of alveolar tissue. To this end, we derive appropriate governing equations incorporating a two-way Hill-like relationship between gas partial pressures and hemoglobin saturations. We numerically solve the resulting boundary-value problem using a non-linear finite-element approach to simulate and validate velocity, partial pressure, and hemoglobin saturation fields in simple geometries. We further perform sensitivity studies to understand the impact of blood speed and acidity variability on key physiological fields. Notably, we simulate perfusion and gas exchange on anatomical alveolar domains constructed from 3D mu-computed-tomography images of murine lungs. Based on these models, we show that morphological variations decrease O-2 and CO2 diffusing capacity, predicting trends and values that are consistent with current medical knowledge. We envision that our model will provide an effective in silico framework to study how exercise and pathological conditions affect perfusion dynamics and the overall gas exchange function of the respiratory system.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Multidisciplinary
Mechanics
Mathematics, Interdisciplinary Applications
Scopus
Computer Science Applications
Mechanics Of Materials
Mechanical Engineering
Physics And Astronomy (All)
Computational Mechanics
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Herrera, Bastian - Pontificia Universidad Católica de Chile - Chile
2 HURTADO-SEPULVEDA, DANIEL ESTEBAN Hombre Pontificia Universidad Católica de Chile - Chile
MIT - Estados Unidos
MIT School of Engineering - Estados Unidos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Agencia Nacional de Investigación y Desarrollo
Chilean National Agency for Research and Development (ANID) through grant FONDECYT

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work received financial support from the Chilean National Agency for Research and Development (ANID) through grant FONDECYT Regular #1220465. We thank Pablo Zurita for being part of the discussions that led to this work. We also thank Mauricio Sarabia for his support with murine lung u-CT images.
This work received financial support from the Chilean National Agency for Research and Development (ANID) through grant FONDECYT Regular #1220465 . We thank Pablo Zurita for being part of the discussions that led to this work. We also thank Mauricio Sarabia for his support with murine lung -CT images.

Muestra la fuente de financiamiento declarada en la publicación.