Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Integrating wavelet transformation for end-to-end direct signal classification
Indexado
WoS WOS:001361651900001
Scopus SCOPUS_ID:85209385552
DOI 10.1016/J.DSP.2024.104878
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In addressing temporal dependencies within data, specifically in signal analysis, the integration of Deep Neural Networks (DNN) has demonstrated notable improvements when coupled with a preprocessing stage designed for extracting implicit information. In this context, the widely adopted Wavelet Transform (WT) has garnered attention for its remarkable results. However, inherent challenges, such as the imperative definition of parameters for optimal information extraction across diverse scales and resolutions, as well as the prerequisite batch conversion of signals prior to network training, underscore the need for innovative solutions. In response to these challenges, the main contribution of this manuscript is a novel DNN architecture to replace the preprocessing phase. This architecture produces output characteristics resembling those derived from WT, preventing the necessity for a preceding batch execution. Our contribution not only stands as an independent solution but also seamlessly integrates with other modeling techniques, eliminating the prerequisite for the upfront execution of any wavelet transformations. To assess its performance, our methodology undergoes rigorous evaluation against DNNs in classifying signals from real-world applications. Our findings indicate the promising potential of end-to- end schemes in advancing signal analysis applications.

Revista



Revista ISSN
Digital Signal Processing 1051-2004

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Electrical & Electronic
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ribeiro-Filho, Otavio - Itau Unibanco - Brasil
2 Ponti, Moacir A. - UNIV SAO PAULO - Brasil
Universidade de São Paulo - Brasil
3 Curilem, Millaray - Universidad de La Frontera - Chile
4 Rios, Ricardo Araujo Hombre Univ Fed Bahia - Brasil
Universidade Federal da Bahia - Brasil

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Conselho Nacional de Desenvolvimento Científico e Tecnológico
FAPESB
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Google
Fundação de Amparo à Pesquisa do Estado da Bahia
CNPq (Brazilian National Council for Scientific and Technological Development)
AGA Research Foundation
Terumo Foundation for Life Sciences and Arts
Terumo Life Science Foundation
CAPES (Coordination for the Improve-ment of Higher Education Personnel - Brazil)
INCITE FAPESB (Bahia Research Foundation)
Google Research Awards for Latin America
Maria Emilia Foundation
INCITE FAPESB

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported by CAPES (Coordination for the Improve-ment of Higher Education Personnel - Brazil) grant [88887.463387/2019-00], Google Research Awards for Latin America, CNPq (Brazilian National Council for Scientific and Technological Development) grants [406354/2023-5, 312755/2023-6], Maria Emilia Foundation grant to 01/2023, and INCITE FAPESB (Bahia Research Foundation) grant TO PIE0002/2022, FAPESB grant [1589/2021], and Terumo Life Science Foundation.
This work was supported by CAPES (Coordination for the Improvement of Higher Education Personnel \u2013 Brazil) grant [88887.463387/2019-00], Google Research Awards for Latin America, CNPq (Brazilian National Council for Scientific and Technological Development) grants [406354/2023-5, 312755/2023-6], Maria Emilia Foundation grant to 01/2023, and INCITE FAPESB (Bahia Research Foundation) grant TO PIE0002/2022, FAPESB grant [1589/2021], and Terumo Life Science Foundation.
This work was supported by CAPES (Coordination for the Improvement of Higher Education Personnel \u2013 Brazil) grant [88887.463387/2019-00], Google Research Awards for Latin America, CNPq (Brazilian National Council for Scientific and Technological Development) grants [406354/2023-5, 312755/2023-6], Maria Emilia Foundation grant to 01/2023, and INCITE FAPESB (Bahia Research Foundation) grant TO PIE0002/2022, FAPESB grant [1589/2021], and Terumo Life Science Foundation.

Muestra la fuente de financiamiento declarada en la publicación.