Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Unbiased and reproducible liver MRI-PDFF estimation using a scan protocol-informed deep learning method
Indexado
WoS WOS:001351993400001
Scopus SCOPUS_ID:85208493451
DOI 10.1007/S00330-024-11164-X
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



ObjectiveTo estimate proton density fat fraction (PDFF) from chemical shift encoded (CSE) MR images using a deep learning (DL)-based method that is precise and robust to different MR scanners and acquisition echo times (TEs).MethodsVariable echo times neural network (VET-Net) is a two-stage framework that first estimates nonlinear variables of the CSE-MR signal model, to posteriorly estimate water/fat signal components using the least-squares method. VET-Net incorporates a vector with TEs as an auxiliary input, therefore enabling PDFF calculation with any TE setting. A single-site liver CSE-MRI dataset (188 subjects, 4146 axial slices) was considered, which was split into training (150 subjects), validation (18), and testing (20) subsets. Testing subjects were scanned using several protocols with different TEs, which we then used to measure the PDFF reproducibility coefficient (RDC) at two regions of interest (ROIs): the right posterior and left hepatic lobes. An open-source multi-site and multi-vendor fat-water phantom dataset was also used for PDFF bias assessment.ResultsVET-Net showed RDCs of 1.71% and 1.04% on the right posterior and left hepatic lobes, respectively, across different TEs, which was comparable to a reference graph cuts-based method (RDCs = 1.71% and 0.86%). VET-Net also showed a smaller PDFF bias (-0.55%) than graph cuts (0.93%) when tested on a multi-site phantom dataset. Reproducibility (1.94% and 1.59%) and bias (-2.04%) were negatively affected when the auxiliary TE input was not considered.ConclusionVET-Net provided unbiased and precise PDFF estimations using CSE-MR images from different hardware vendors and different TEs, outperforming conventional DL approaches.Key PointsQuestionReproducibility of liver PDFF DL-based approaches on different scan protocols or manufacturers is not validated.FindingsVET-Net showed a PDFF bias of -0.55% on a multi-site phantom dataset, and RDCs of 1.71% and 1.04% at two liver ROIs.Clinical relevanceVET-Net provides efficient, in terms of scan and processing times, and unbiased PDFF estimations across different MR scanners and scan protocols, and therefore it can be leveraged to expand the use of MRI-based liver fat quantification to assess hepatic steatosis.Key PointsQuestionReproducibility of liver PDFF DL-based approaches on different scan protocols or manufacturers is not validated.FindingsVET-Net showed a PDFF bias of -0.55% on a multi-site phantom dataset, and RDCs of 1.71% and 1.04% at two liver ROIs.Clinical relevanceVET-Net provides efficient, in terms of scan and processing times, and unbiased PDFF estimations across different MR scanners and scan protocols, and therefore it can be leveraged to expand the use of MRI-based liver fat quantification to assess hepatic steatosis.Key PointsQuestionReproducibility of liver PDFF DL-based approaches on different scan protocols or manufacturers is not validated.FindingsVET-Net showed a PDFF bias of -0.55% on a multi-site phantom dataset, and RDCs of 1.71% and 1.04% at two liver ROIs.Clinical relevanceVET-Net provides efficient, in terms of scan and processing times, and unbiased PDFF estimations across different MR scanners and scan protocols, and therefore it can be leveraged to expand the use of MRI-based liver fat quantification to assess hepatic steatosis.

Revista



Revista ISSN
European Radiology 0938-7994

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Radiology, Nuclear Medicine & Medical Imaging
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Meneses, Juan Pablo Hombre Pontificia Universidad Católica de Chile - Chile
i Hlth Millennium Inst Intelligent Healthcare Engn - Chile
Instituto Milenio en Ingeniería e Inteligencia Artificial para la Salud - Chile
2 Qadir, Ayyaz - MONASH UNIV - Australia
Monash University - Australia
3 Surendran, Nirusha - MONASH UNIV - Australia
Monash University - Australia
4 Arrieta, Cristobal - i Hlth Millennium Inst Intelligent Healthcare Engn - Chile
Universidad Alberto Hurtado - Chile
Instituto Milenio en Ingeniería e Inteligencia Artificial para la Salud - Chile
5 Tejos, Cristian - Pontificia Universidad Católica de Chile - Chile
i Hlth Millennium Inst Intelligent Healthcare Engn - Chile
Instituto Milenio en Ingeniería e Inteligencia Artificial para la Salud - Chile
6 Andia, Marcelo E. - i Hlth Millennium Inst Intelligent Healthcare Engn - Chile
Pontificia Universidad Católica de Chile - Chile
Instituto Milenio en Ingeniería e Inteligencia Artificial para la Salud - Chile
7 Chen, Zhaolin - MONASH UNIV - Australia
Monash University - Australia
8 URIBE-ESPINOZA, SERGIO ANDRES Hombre Pontificia Universidad Católica de Chile - Chile
MONASH UNIV - Australia
Monash University - Australia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Agencia Nacional de Investigación y Desarrollo
ANID-Millennium Science Initiative Programme
Agenția Națională pentru Cercetare și Dezvoltare
Millennium Institute for Intelligent Healthcare Engineering

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was funded by ANID-Millennium Science Initiative Programme-ICN2021_004.
This work was funded by ANID\u2014Millennium Science Initiative Programme\u2014ICN2021_004.

Muestra la fuente de financiamiento declarada en la publicación.