Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Deep Learning Enhanced Feature Extraction of Potholes Using Vision and LiDAR Data for Road Maintenance
Indexado
WoS WOS:001377296900014
Scopus SCOPUS_ID:85211984131
DOI 10.1109/ACCESS.2024.3512783
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



As the global population increases, so does the number of vehicles on our roads, which makes maintenance of the road infrastructure critical for safe and efficient transportation. A significant challenge in road maintenance is to address surface defects, such as potholes, which pose the risk of accidents and vehicle damage. This work proposes an automated solution to improve the detection and aid in the repair of potholes, thus reducing the reliance on manual inspections and reducing the overall maintenance time. Our methodology integrates LiDAR (Light Detection and Ranging) with RGB (Red, Green, and Blue) camera data to enhance depth information for accurate pothole characterisation. Geo-positioning using the GNSS (Global Navigation Satellite System) allows for precise mapping of detected potholes. An RGB image dataset created by aggregating publicly available pothole image datasets was used to train the object detection model YOLO (You Only Look Once) implemented in this work. Using this data, the models YOLOv5, YOLOv6, YOLOv7, and YOLOv8 were trained and their performance analysed. Remarkably, YOLOv5 showed the best implementation performance during the training phase, and it was lately selected for real time deployment. The data provided by the LiDAR sensor were used to compute the area, volume and depth of the detected pothole using the Convex Hull approaches. During deployment on Edinburgh City roads, our work was able to effectively detect and characterise 52 potholes of different volume and area. The implementation of this technology has the potential to significantly reduce inspection time, and our findings offer promising directions for future developments in automated road maintenance systems.

Revista



Revista ISSN
Ieee Access 2169-3536

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Information Systems
Telecommunications
Engineering, Electrical & Electronic
Scopus
Materials Science (All)
Computer Science (All)
Engineering (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Karukayil, Abhiram - Heriot Watt Univ - Reino Unido
Heriot-Watt University - Reino Unido
2 Quail, Christopher - Heriot Watt Univ - Reino Unido
Heriot-Watt University - Reino Unido
3 Cheein, Fernando Auat - Harper Adams Univ - Reino Unido
Universidad Técnica Federico Santa María - Chile
3 Auat Cheein, Fernando - Harper Adams University - Reino Unido
Universidad Técnica Federico Santa María - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad Técnica Federico Santa María
Heriot-Watt University
Advanced Centre of Electrical and Electronic Engineering (ANID), Universidad Tecnica Federico Santa Maria (UTFSM)
The National Robotarium-the Institute of Sensors, Signals and Systems, Heriot-Watt University
Advanced Centre of Electrical and Electronic Engineering
National Robotarium the Institute of Sensors

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported in part by The National Robotarium-the Institute of Sensors, Signals and Systems, Heriot-Watt University; and in part by the Advanced Centre of Electrical and Electronic Engineering (ANID), Universidad Tecnica Federico Santa Maria (UTFSM), under Grant AFB240002.
This work was supported in part by The National Robotarium the Institute of Sensors, Signals and Systems, Heriot-Watt University; and in part by the Advanced Centre of Electrical and Electronic Engineering (ANID), Universidad Tecnica Federico Santa Maria (UTFSM), under Grant AFB240002.

Muestra la fuente de financiamiento declarada en la publicación.