Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Predicting Stroke Risk With an Interpretable Classifier
Indexado
WoS WOS:000606546400001
Scopus SCOPUS_ID:85098780261
DOI 10.1109/ACCESS.2020.3047195
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Predicting an individual's risk of getting a stroke has been a research subject for many authors worldwide since it is a frequent illness and there is strong evidence that early awareness of having that risk can be beneficial for prevention and treatment. Many Governments have been collecting medical data about their own population with the purpose of using artificial intelligence methods for making those predictions. The most accurate ones are based on so called black-box methods which give little or no information about why they make a certain prediction. However, in the medical field the explanations are sometimes more important than the accuracy since they allow specialists to gain insight about the factors that influence the risk level. It is also frequent to find medical information records with some missing data. In this work, we present the development of a prediction method which not only outperforms some other existing ones but it also gives information about the most probable causes of a high stroke risk and can deal with incomplete data records. It is based on the Dempster-Shafer theory of plausibility. For the testing we used data provided by the regional hospital in Okayama, Japan, a country in which people are compelled to undergo annual health checkups by law. This article presents experiments comparing the results of the Dempster-Shafer method with the ones obtained using other well-known machine learning methods like Multilayer perceptron, Support Vector Machines and Naive Bayes. Our approach performed the best in these experiments with some missing data. It also presents an analysis of the interpretation of rules produced by the method for doing the classification. The rules were validated by both medical literature and human specialists.

Revista



Revista ISSN
Ieee Access 2169-3536

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Information Systems
Telecommunications
Engineering, Electrical & Electronic
Scopus
Materials Science (All)
Computer Science (All)
Engineering (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Penafiel, Sergio Hombre Universidad de Chile - Chile
1 Penafiel, Sergio - Universidad de Chile - Chile
2 Baloian, Nelson Hombre Universidad de Chile - Chile
2 Baloian, Nelson Hombre Universidad de Chile - Chile
2 Baloian, Nelson Hombre Universidad de Chile - Chile
2 Baloian, Nelson Hombre Universidad de Chile - Chile
2 Baloian, Nelson Hombre Universidad de Chile - Chile
2 Baloian, Nelson - Universidad de Chile - Chile
2 Baloian, Nelson Hombre Universidad de Chile - Chile
2 Baloian, Nelson - Universidad de Chile - Chile
2 Baloian, Nelson - Universidad de Chile - Chile
3 Sanson, Horacio Hombre Allm Inc - Japón
Allm Inc. - Japón
4 PINO-URTUBIA, JOSE ALBERTO NICOLAS Hombre Universidad de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Conicyt (Chile) Master Scholarship

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The work of Sergio Penafiel was supported by the Conicyt (Chile) Master Scholarship under Grant 22180506.
The work of Sergio Penafiel was supported by the Conicyt (Chile) Master Scholarship under Grant 22180506.
The work of Sergio Penafiel was supported by the Conicyt (Chile) Master Scholarship under Grant 22180506.
The work of Sergio Penafiel was supported by the Conicyt (Chile) Master Scholarship under Grant 22180506.
The work of Sergio Penafiel was supported by the Conicyt (Chile) Master Scholarship under Grant 22180506.
The work of Sergio Peñafiel was supported by the Conicyt (Chile) Master Scholarship under Grant 22180506.
The work of Sergio Penafiel was supported by the Conicyt (Chile) Master Scholarship under Grant 22180506.
The work of Sergio Penafiel was supported by the Conicyt (Chile) Master Scholarship under Grant 22180506.
The work of Sergio Penafiel was supported by the Conicyt (Chile) Master Scholarship under Grant 22180506.
The work of Sergio Penafiel was supported by the Conicyt (Chile) Master Scholarship under Grant 22180506.

Muestra la fuente de financiamiento declarada en la publicación.