Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1109/ICPRS62101.2024.10677829 | ||||
| Año | 2024 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Brain tumors often feature the genetic biomarker O6-Methylguanine-DNA-Methyltransferase (MGMT) associated with a favorable response to chemotherapy and an improved prognosis. Currently, detecting MGMT presence relies on invasive brain biopsy procedures. Thus, this study aims to develop a data mining-based radiomics methodology for non-invasive identifying and evaluating brain tumor genetic biomarkers using radiomics in magnetic resonance images (MRIs). MRIs with segmentation masks were used to extract variables and employ feature selection techniques. Several machine learning models were trained, where Logistic Regression, employing LASSO selection, emerged as the best-performing model, achieving 61% accuracy. Additionally, an explainability module utilizing Shap values identified three significant variables: a T1CE sequence variable related to texture, a FLAIR sequence variable of first-order statistics, and a T1 sequence variable of first-order statistics. This radiomic methodology, with its performance and explainable nature, could offer diagnostic support to clinicians in tumor management.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Ponce, Sebastian | - |
Universidad de Valparaíso - Chile
Millennium Inst Intelligent Healthcare Engn iHEAL - Chile Instituto Milenio en Ingeniería e Inteligencia Artificial para la Salud - Chile |
| 2 | Chabert, Steren | - |
Millennium Inst Intelligent Healthcare Engn iHEAL - Chile
Universidad de Valparaíso - Chile Instituto Milenio en Ingeniería e Inteligencia Artificial para la Salud - Chile |
| 3 | Mayeta, Leondry | - |
Universidad de Valparaíso - Chile
Millennium Inst Intelligent Healthcare Engn iHEAL - Chile Instituto Milenio en Ingeniería e Inteligencia Artificial para la Salud - Chile |
| 4 | Franco, Pamela | - |
Ctr Interdisciplinary Biomed & Engn Res Hlth - Chile
Universidad de Valparaíso - Chile |
| 5 | Plaza-Vega, Francisco | - |
Universidad de Santiago de Chile - Chile
|
| 6 | Querales, Marvin | - |
Ctr Interdisciplinary Biomed & Engn Res Hlth - Chile
Universidad de Valparaíso - Chile |
| 7 | Salas, Rodrigo | - |
Millennium Inst Intelligent Healthcare Engn iHEAL - Chile
Universidad de Valparaíso - Chile Instituto Milenio en Ingeniería e Inteligencia Artificial para la Salud - Chile |
| 8 | IEEE | Corporación |
| Fuente |
|---|
| ANID |
| ANID Fondecyt |
| Agencia Nacional de Investigación y Desarrollo |
| ANID Fondecyt Regular |
| Agencia Nacional de Investigacion y Desarrollo de Chile, through the grant ANID-Millennium Science Initiative Program |
| Agradecimiento |
|---|
| This work is supported by the Agencia Nacional de Investigacion y Desarrollo de Chile, through the grant ANID-Millennium Science Initiative Program ICN2021 004, ANID Fondecyt Postdoctorado 3240078, ANID FONDECYT Regular 1221938, and ANID FONDECYT Regular 1231268. |
| This work is supported by the Agencia Nacional de Investigaci\u00F3n y Desarrollo de Chile, through the grant ANID\u2014Millennium Science Initiative Program ICN2021_004, ANID Fondecyt Postdoctorado 3240078, ANID FONDECYT Regular 1221938, and ANID FONDECYT Regular 1231268. |