Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Machine learning and deep learning models for the diagnosis of apical periodontitis: a scoping review
Indexado
WoS WOS:001338949500003
Scopus SCOPUS_ID:85206643131
DOI 10.1007/S00784-024-05989-5
Año 2024
Tipo revisión

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



ObjectivesTo assess the existing literature on the use of machine learning (ML) and deep learning (DL) models for diagnosing apical periodontitis (AP) in humans.Materials and methodsA scoping review was conducted following the Arksey and O'Malley framework. The PubMed, SCOPUS, and Web of Science databases were searched, focusing on articles using ML/DL approaches for AP diagnosis. No restrictions were applied. Two independent reviewers screened publications and charted data in predefined Excel tables for analysis.ResultsNineteen publications focused on diagnosing AP by identifying periapical radiolucent lesions (PRLs) in dental radiographs were included. The average sensitivity and specificity for reviewed models were 83% and 90%, respectively. Only three studies explored the direct impact of artificial intelligence (AI) assistance on clinicians' diagnostic performance. Both consistently showed improved sensitivity without compromising specificity. Significant variability in dataset sizes, labeling techniques, and algorithm configurations was noticed.ConclusionsFindings affirm AI models' effectiveness and transformative potential in diagnosing AP by improving the accurate detection of periapical radiolucencies using dental radiographs. However, the lack of standardized reporting on crucial aspects of methodology and performance metrics prevents establishing a definitive diagnostic approach using AI. Further studies are needed to expand AI applications in AP diagnosis beyond radiographic analysis.Clinical relevanceAI can potentially improve diagnostic accuracy in AP diagnosis by enhancing the sensitivity of PRL detection in dental radiographs without compromising specificity.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Dentistry, Oral Surgery & Medicine
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Basso, Angelo - Universidad Nacional Andrés Bello - Chile
2 Salas, Fernando - Universidad Nacional Andrés Bello - Chile
3 HERNANDEZ-GARCIA, MARCELA TERESA Mujer Universidad de Chile - Chile
4 FERNANDEZ-VALDES, ALEJANDRA Mujer Universidad Nacional Andrés Bello - Chile
5 Sierra, Alfredo - Universidad Nacional Andrés Bello - Chile
Universidad de Chile - Chile
6 JIMENEZ-LIZANA, CONSTANZA Mujer Universidad Nacional Andrés Bello - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
National Fund for Scientific and Technological Development (FONDECYT), Chile
Faculty of Dentistry, Universidad Andres Bello

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This study was funded by the National Fund for Scientific and Technological Development (FONDECYT), Chile, under grant number 11240301.
This study was funded by the National Fund for Scientific and Technological Development (FONDECYT), Chile, under grant number 11240301.
This study was funded by the National Fund for Scientific and Technological Development (FONDECYT), Chile, under grant number 11240301.

Muestra la fuente de financiamiento declarada en la publicación.