Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.CANLET.2024.217348 | ||||
| Año | 2025 | ||||
| Tipo | revisión |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Cancers of unknown primary (CUP) are a heterogeneous group of aggressive metastatic cancers where standardised diagnostic techniques fail to identify the organ where it originated, resulting in a poor prognosis and resistance to treatment. Recent advances in large-scale sequencing techniques have enabled the identification of mutational signatures specific to particular tumour subtypes, even from liquid biopsy samples such as blood. This breakthrough paves the way for the development of new cost-effective diagnostic strategies. This mini-review explores recent advancements in Machine Learning (ML) and its application to tumour classification methods for CUP patients, identifying its weaknesses and strengths when classifying the tumour type. In the era of multiomics, integrating several sources of information (e.g., imaging, molecular biomarkers, and family history) requires important theoretical advancements: increasing the dimensionality of the problem can result in lowering the predictive accuracy and robustness when data is scarce. Here, we review and discuss different architectures and strategies for incorporating cutting-edge machine learning into CUP diagnosis, aiming to bridge the gap between theory and clinical practice.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | OROSTICA-TAPIA, KAREN YASMIN | Mujer |
Universidad de Talca - Chile
|
| 2 | Mardones, Felipe | - |
Universidad de Talca - Chile
|
| 3 | BERNAL-GOMEZ, YANARA ALEJANDRA | - |
Fac Med Clin Alemana Univ Desarrollo - Chile
Facultad de Medicina Clínica Alemana Universidad del Desarrollo - Chile |
| 4 | Molina, Samuel | - |
Universidad de Chile - Chile
|
| 5 | ORCHARD-CONCHA, MARCOS EDUARDO | Hombre |
Universidad del Desarrollo - Chile
Universidad de Chile - Chile |
| 6 | VERDUGO-SALGADO, RICARDO ALEJANDRO | Hombre |
Universidad de Chile - Chile
Universidad de Talca - Chile |
| 7 | Carvajal-Hausdorf, Daniel E. | Hombre |
Universidad del Desarrollo - Chile
|
| 8 | MARCELAIN-CUBILLOS, KATHERINE JENNY | Mujer |
Universidad de Chile - Chile
|
| 9 | Contreras, Seba | Hombre |
Max Planck Inst Dynam & Selforg - Alemania
Max Planck Institute for Dynamics and Self-Organization - Alemania |
| 10 | ARMISEN-YANEZ, RICARDO AMADO | Hombre |
Fac Med Clin Alemana Univ Desarrollo - Chile
Facultad de Medicina Clínica Alemana Universidad del Desarrollo - Chile |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad de Talca |
| Max-Planck-Society |
| Roche |
| Proyecto Anillo en Ciencia y Tecnologia |
| Agencia Nacional de Investigación y Desarrollo |
| Janssen & Tecnofarma |
| Agradecimiento |
|---|
| Open Access funding enabled and organized by Projekt DEAL. This work received support from Agencia Nacional de Investigacion y Desarrollo (ANID) , Chile, through projects Fondecyt Iniciacion 11241185 (KO) , Proyecto Anillo en Ciencia y Tecnologia ACT210079 (RA) and FONDECYT regular 1221436 (RA) and from the IPIG-ACA-KaOr Fund financed by the Gender Equality Instrument of the University of Talca, InES-Gender Project INGE210025 (ANID) (KO) . YABreceived support from ANID, Chile, through Becas Doctorado Nacional 2021- no 21210439. SC received support from the Max-Planck-Society. The funding sources were not involved in the study design, collection, analysis, and interpretation of data; in the writing of report, nor in the decision to submit the article for publication.r received support from ANID, Chile, through Becas Doctorado Nacional 2021- no 21210439. SC received support from the Max-Planck-Society. The <B>Funding</B> sources were not involved in the study design, collection, analysis, and interpretation of data; in the writing of report, nor in the decision to submit the article for publication. |
| Open Access funding enabled and organized by Projekt DEAL. This work received support from Agencia Nacional de Investigaci\u00F3n y Desarrollo (ANID), Chile, through projects Fondecyt Iniciaci\u00F3n 11241185 (KO), Proyecto Anillo en Ciencia y Tecnolog\u00EDa ACT210079 (RA) and FONDECYT regular 1221436 (RA) and from the IPIG-ACA-KaOr Fund financed by the Gender Equality Instrument of the University of Talca, InES-Gender Project INGE210025 (ANID)(KO). YAB received support from ANID, Chile, through Becas Doctorado Nacional 2021\u2013 no 21210439. SC received support from the Max-Planck-Society.RA declares honoraria for conferences, advisory boards, and educational activities from Roche, grants, and support for scientific research from Illumina, Pfizer, Roche & Thermo Fisher Scientific, and honoraria for conferences from Thermo Fisher Scientific, Janssen & Tecnofarma and is an Illumina, Thermo Fisher Scientific, Moderna and Pfizer stock holder. |
| Open Access funding enabled and organized by Projekt DEAL. This work received support from Agencia Nacional de Investigaci\u00F3n y Desarrollo (ANID), Chile, through projects Fondecyt Iniciaci\u00F3n 11241185 (KO), Proyecto Anillo en Ciencia y Tecnolog\u00EDa ACT210079 (RA) and FONDECYT regular 1221436 (RA) and from the IPIG-ACA-KaOr Fund financed by the Gender Equality Instrument of the University of Talca, InES-Gender Project INGE210025 (ANID)(KO). YAB received support from ANID, Chile, through Becas Doctorado Nacional 2021\u2013 no 21210439. SC received support from the Max-Planck-Society.RA declares honoraria for conferences, advisory boards, and educational activities from Roche, grants, and support for scientific research from Illumina, Pfizer, Roche & Thermo Fisher Scientific, and honoraria for conferences from Thermo Fisher Scientific, Janssen & Tecnofarma and is an Illumina, Thermo Fisher Scientific, Moderna and Pfizer stock holder. |