Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A Hyper-Parameter Optimizer Algorithm Based on Conditional Opposition Local-Based Learning Forbidden Redundant Indexes Adaptive Artificial Bee Colony Applied to Regularized Extreme Learning Machine
Indexado
WoS WOS:001377836600001
Scopus SCOPUS_ID:85211950971
DOI 10.3390/ELECTRONICS13234652
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Finding the best configuration of a neural network's hyper-parameters may take too long to be feasible using an exhaustive search, especially when the cardinality of the search space has a big combinatorial number of possible solutions with various hyper-parameters. This problem is aggravated when we also need to optimize the parameters of the neural network, such as the weight of the hidden neurons and biases. Extreme learning machines (ELMs) are part of the random weights neural network family, in which parameters are randomly initialized, and the solution, unlike gradient-descent-based algorithms, can be found analytically. This ability is especially useful for metaheuristic analysis due to its reduced training times allowing a faster optimization process, but the problem of finding the best hyper-parameter configuration is still remaining. In this paper, we propose a modification of the artificial bee colony (ABC) metaheuristic to act as parameterizers for a regularized ELM, incorporating three methods: an adaptive mechanism for ABC to balance exploration (global search) and exploitation (local search), an adaptation of the opposition-based learning technique called opposition local-based learning (OLBL) to strengthen exploitation, and a record of access to the search space called forbidden redundant indexes (FRI) that allow us to avoid redundant calculations and track the explored percentage of the search space. We set ten parameterizations applying different combinations of the proposed methods, limiting them to explore up to approximately 10% of the search space, with results over 98% compared to the maximum performance obtained in the exhaustive search in binary and multiclass datasets. The results demonstrate a promising use of these parameterizations to optimize the hyper-parameters of the R-ELM in datasets with different characteristics in cases where computational efficiency is required, with the possibility of extending its use to other problems with similar characteristics with minor modifications, such as the parameterization of support vector machines, digital image filters, and other neural networks, among others.

Revista



Revista ISSN
Electronics 2079-9292

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Information Systems
Physics, Applied
Engineering, Electrical & Electronic
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Vasquez-Iglesias, Philip - Universidad Católica del Maule - Chile
2 Pizarro, Amelia E. - Universidad Católica del Maule - Chile
3 Zabala-Blanco, David Hombre Universidad Católica del Maule - Chile
4 Fuentes-Concha, Juan - Universidad Católica del Maule - Chile
5 Ahumada-García, Roberto Hombre Universidad Católica del Maule - Chile
6 LAROZE-NAVARRETE, DAVID NICOLAS Hombre Universidad de Tarapacá - Chile
7 GONZALEZ-GUTIERREZ, PAULO ALEJANDRO Hombre Universidad de Talca - Chile
Universidad de Tarapacá - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
DOCTORADO
ANID-Subdireccion de Capital Humano/Doctorado Nacional
ANID-Subdirección de Capital Humano
The 2023 Doctoral Scholarship of Facultad de Ingenieria Universidad Catolica del Maule
ANID-Subdi-rección de Capital Humano

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
A.E.P. gratefully acknowledges the financial support provided by ANID-Subdireccion de Capital Humano/Doctorado Nacional/2024-21242342. J.F.-C. acknowledges the financial support of 2023 Doctoral Scholarship of Facultad de Ingenieria Universidad Catolica del Maule. R.A.-G. gratefully acknowledges the financial support provided by ANID-Subdireccion de Capital Humano/Doctorado Nacional/2024-21241043.
A.E.P. gratefully acknowledges the financial support provided by ANID-Subdi-recci\u00F3n de Capital Humano/Doctorado Nacional/2024-21242342. J.F.-C. acknowledges the financial support of 2023 Doctoral Scholarship of Facultad de Ingenier\u00EDa Universidad Cat\u00F3lica del Maule. R.A.-G. gratefully acknowledges the financial support provided by ANID-Subdirecci\u00F3n de Capital Humano/Doctorado Nacional/2024-21241043.

Muestra la fuente de financiamiento declarada en la publicación.