Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1162/NETN_A_00411 | ||
| Año | 2024 | ||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Filter average short-term (FAST) connectivity is an EEG analysis method that enhances detection of dynamic functional connectivity changes during cognitive events like event-related potentials, effectively handling EEG noise and maximizing temporal resolution. It reduces the required trial numbers for reliable analysis, particularly beneficial for studying tasks such as working memory. FAST connectivity complements traditional methods by focusing on temporal connectivity patterns, showing superior performance in simulations compared with standard measures. Applied to Alzheimer's datasets, it identifies significant differences in brain activity during visual short-term memory tasks, highlighting its potential for understanding neurological conditions.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Roy, Om | - |
Univ Strathclyde - Reino Unido
|
| 2 | Moshfeghi, Yashar | - |
Univ Strathclyde - Reino Unido
|
| 3 | Ibanez, Agustin | - |
Universidad Adolfo Ibáñez - Chile
Trinity Coll Dublin - Irlanda |
| 4 | Lopera, Francisco | - |
UNIV ANTIOQUIA - Colombia
|
| 5 | Parra, Mario A. | - |
Univ Strathclyde - Reino Unido
|
| 6 | Smith, Keith M. | - |
Univ Strathclyde - Reino Unido
|
| Fuente |
|---|
| Engineering and Physical Sciences Research Council (EPSRC) Student Excellence Award (SEA) Studentship by the United Kingdom Research and Innovation (UKRI) council, RTSG |