Muestra la distribución de disciplinas para esta publicación.
Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.
| Indexado |
|
||||
| DOI | |||||
| Año | 2024 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This article explores the integration of fully autonomous legged robots in obstacle filled environments, simultaneously addressing the challenges of navigation and control. Despite the potential of legged robots for dynamic tasks, their deployment in complex environments has been hindered by the difficulty of developing effective autonomous control systems. In particular, the motion planning problem is addressed in this article, by formulating it as a Partially Observable Markov Decision Process (POMDP) and applying Proximal Policy Optimization (PPO), a model-free Deep Reinforcement Learning (DRL) algorithm. To improve sample efficiency and real-world applicability, the proposed method incorporates a Central Pattern Generator (CPG) for motion planning and a Variational Autoencoder (VAE) for terrain representation, reducing the complexity of action and observation spaces. Referred to as the VAE-CPG architecture, its performance is demonstrated using the Unitree Laikago robot within the PyBullet simulation environment, aiming to show its effectiveness in simulated construction sites. Our findings indicate that by reducing the legged action space to periodic gait patterns and optimizing the gait based on sensory feedback, we achieve enhanced adaptability and efficiency. This work presents a viable means towards the deployment of autonomous legged robots and their improved efficiency in real applications.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Dassori, Ignacio | - |
Universidad de Chile - Chile
|
| 2 | Adams, Martin | Hombre |
Universidad de Chile - Chile
|
| 3 | Vasquez, Jorge | - |
Carnegie Mellon Univ - Estados Unidos
College of Engineering - Estados Unidos |
| 4 | IEEE | Corporación |
| Fuente |
|---|
| Universidad de Chile |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Air Force Office of Scientific Research |
| US Air Force Office of Scientific Research (AFOSR) |
| Agencia Nacional de Investigación y Desarrollo |
| Agencia Nacional de Investigacion y Desarrollo (ANID) FONDECYT |
| Professional Insurance Agents of Louisiana |
| Agradecimiento |
|---|
| The authors acknowledge "Agencia Nacional de Investigacion y Desarrollo" (ANID) Fondecyt project 1231658, the Department of Electrical Engineering, Universidad de Chile as well as the US Air Force Office of Scientific Research (AFOSR) grant 23IOS020 and ANID/PIA Project AFB180004. |
| The authors acknowledge \"Agencia Nacional de Investigacion y Desarrollo\" (ANID) Fondecyt project 1231658, the Department of Electrical Engineering, Universidad de Chile as well as the US Air Force Office of Scientific Research (AFOSR) grant 23IOS020 and ANID/PIA Project AFB180004. |