Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1103/PHYSREVA.110.063530 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We consider the free-propagation geometry of a light beam (or fluid of light) in a multimode waveguide. As a result of the effective photon-photon interactions, the photon fluid thermalizes to an equilibrium state during its conservative propagation. In this configuration, Rayleigh-Jeans (RJ) thermalization and condensation of classical light waves have been recently observed experimentally in graded index multimode optical fibers characterized by a two-dimensional parabolic trapping potential. As is well known, the properties of RJ condensation differ substantially from those of Bose-Einstein (BE) condensation: The condensate fraction decreases quadratically with the temperature for BE condensation, while it decreases linearly for RJ condensation. Furthermore, for quantum particles the heat capacity tends to zero at low temperatures and it takes a constant value in the classical particle limit at high temperatures. This is in contrast with classical RJ waves, where the specific heat takes a constant value at low temperatures and tends to vanish above the condensation transition in the normal (uncondensed) state. Here we reconcile the thermodynamic properties of BE and RJ condensation: By introducing a frequency cutoff inherent to light propagation in a waveguide, we derive generalized expressions of the thermodynamic properties that include the RJ and BE limits as particular cases. We extend the approach to encompass negative temperatures. In contrast to positive temperatures, the specific heat does not display a singular behavior at negative temperatures, reflecting the noncritical nature of the transition to a macroscopic population of the highest-energy level. Our work contributes to understanding the quantum-to-classical crossover in the equilibrium properties of light, within a versatile experimental platform based on nonlinear optical propagation in multimode waveguides.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Zanaglia, L. | - |
Univ Cote Azur - Francia
Université Côte d'Azur - Francia |
| 2 | Garnier, J. | - |
Inst Polytech Paris - Francia
Centre de Mathématiques Appliquées - Francia |
| 3 | Rica, S. | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 4 | Kaiser, R. | - |
Univ Cote Azur - Francia
Université Côte d'Azur - Francia |
| 5 | Wabnitz, Stefan | Hombre |
Univ Roma Sapienza - Italia
Sapienza Università di Roma - Italia |
| 6 | Michel, C. | - |
Univ Cote Azur - Francia
Inst Univ France - Francia Université Côte d'Azur - Francia Institut Universitaire de France - Francia |
| 7 | Doya, V. | - |
Univ Cote Azur - Francia
Université Côte d'Azur - Francia |
| 8 | Picozzi, A. | Hombre |
Univ Bourgogne - Francia
Laboratoire Interdisciplinaire Carnot de Bourgogne - Francia |
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Agence Nationale de la Recherche |
| Centre National de la Recherche Scientifique (CNRS) |
| H2020 Future and Emerging Technologies |
| Agencia Nacional de Investigación y Desarrollo |
| HORIZON EUROPE Framework Programme |
| HORIZON EUROPE European Innovation Council |
| Sapienza University SEED PNR |
| FET Flagship Project PhoQuS |
| European project SQVAC |
| European Innovation Council-HORIZON EUROPE |
| Agradecimiento |
|---|
| The authors are grateful to I. Carusotto for fruitful discus-sions. Fundings: Centre national de la recherche scientifique (CNRS) , Agence Nationale de la Recherche (ANR-23-CE30-0021, ANR-19-CE46-0007, ANR-15-IDEX-01, ANR-15-IDEX-0003, and ANR-21-ESRE-0040) . The authors are grateful to the Universite Cpte d'Azur's Center for High-Performance Computing (OPAL infrastructure) for providing resources and support. S.R. acknowledges Fondecyt (ANID) under Grant No. 1220369. R.K. acknowledges funding from the FET Flagship Project PhoQuS (Agreement No. 820392) and the European project SQVAC (ERC-2023-POC Project 101123037) . S.W. acknowledges the European Innovation Council-HORIZON EUROPE (101185664) and Sapienza University SEED PNR (SP12218480C7D1E9) . |
| The authors are grateful to I. Carusotto for fruitful discussions. Fundings: Centre national de la recherche scientifique (CNRS), Agence Nationale de la Recherche (ANR-23-CE30-0021, ANR-19-CE46-0007, ANR-15-IDEX-01, ANR-15-IDEX-0003, and ANR-21-ESRE-0040). The authors are grateful to the Universit\u00E9 C\u00F4te d'Azur's Center for High-Performance Computing (OPAL infrastructure) for providing resources and support. S.R. acknowledges Fondecyt (ANID) under Grant No. 1220369. R.K. acknowledges funding from the FET Flagship Project PhoQuS (Agreement No. 820392) and the European project SQVAC (ERC-2023-POC Project 101123037). S.W. acknowledges the European Innovation Council - HORIZON EUROPE (101185664) and Sapienza University SEED PNR (SP12218480C7D1E9). |