Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Secchi Depth Retrieval in Oligotrophic to Eutrophic Chilean Lakes Using Open Access Satellite-Derived Products
Indexado
WoS WOS:001366481300001
Scopus SCOPUS_ID:85210255183
DOI 10.3390/RS16224327
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The application of the Multispectral Instrument (MSI) aboard Sentinel-2A/B constellation for assessing water quality in Chilean lakes represents an emerging area of research, particularly for the environmental monitoring of optically complex water bodies. Similarly, atmospheric correction processors applied to aquatic environments, such as the Case 2 Networks (C2RCC-Nets), are notably underrepresented. This study evaluates the capability of C2RCC-Nets using different neural networks-Case-2 Regional/Coast Color (C2RCC), C2X-Extreme (C2X), and C2X-Complex (C2XC)-to estimate Secchi depth in Lake Lanalhue (eutrophic), Lake Villarrica (oligo-mesotrophic), and Lake Panguipulli (oligotrophic). The evaluation used different statistical methods such as Spearman's correlation and normalized error metrics (nRMSE, nMAE, and nbias) to assess the agreement between satellite-derived data and in situ measurements. C2XC demonstrated the best fit for Lake Lanalhue, with an nRMSE = 33.13%, nMAE = 23.51%, and nbias = 8.57%, in relation to the median ground truth values. In Lake Villarrica, the C2XC neural network displayed a moderate correlation (rs = 0.618) and error metrics, with an nRMSE of 24.67% and nMAE of 20.67%, with an nbias of 4.21%. In the oligotrophic Lake Panguipulli, no relationship was observed between estimated and measured values, which could be related to the fact that the selected neural networks were developed for very case 2 waters. These findings highlight the need for methodological advancements in processing satellite-derived water quality products for Chile's optical water types, particularly for very clear waters. Nonetheless, this study underscores the need for model-specific calibration of C2RCC-Nets, as lakes with different optical water types and trophic states may require tailored training ranges for inherent optical properties.

Revista



Revista ISSN
Remote Sensing 2072-4292

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Remote Sensing
Scopus
Earth And Planetary Sciences (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Rivera, Daniela Mujer Universidad de Concepción - Chile
Universidad Autónoma de Chile - Chile
2 ARUMI-RIBERA, JOSE LUIS Hombre Universidad de Concepción - Chile
3 LILLO-SAAVEDRA, MARIO FERNANDO Hombre Universidad de Concepción - Chile
4 Esse, Carlos - Universidad Autónoma de Chile - Chile
5 Arancibia, Patricia Mujer Universidad del Bío Bío - Chile
6 URRUTIA-PEREZ, ROBERTO ENRIQUE Hombre Universidad de Concepción - Chile
7 Portuguez‐maurtua, Marcelo Hombre Univ Nacl Agr La Molina - Perú
Universidad Nacional Agraria la Molina - Perú
8 Ogashawara, Igor - Leibniz Inst Freshwater Ecol & Inland Fisheries - Alemania
Leibniz-Institute of Freshwater Ecology and Inland Fisheries - Alemania

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
CRHIAM Water Center
Beca de Doctorado Nacional de la Agencia de Investigacion y Desarrollo

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was funded by the Beca de Doctorado Nacional de la Agencia de Investigacion y Desarrollo ANID/21201043 and the APC was funded by CRHIAM Water Center, Project ANID/FONDAP/15130015 and ANID/FONDAP/1523A0001.
This research was funded by the Beca de Doctorado Nacional de la Agencia de Investigaci\u00F3n y Desarrollo ANID/21201043 and the APC was funded by CRHIAM Water Center, Project ANID/FONDAP/15130015 and ANID/FONDAP/1523A0001.

Muestra la fuente de financiamiento declarada en la publicación.