Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Deep learning-based classification of visual symptoms of bacterial wilt disease caused by Ralstonia solanacearum in tomato plants
Indexado
WoS WOS:001359287900001
Scopus SCOPUS_ID:85208762546
DOI 10.1016/J.COMPAG.2024.109617
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Classification of plant diseases based on computer vision is a multidisciplinary challenge that involves technical and data-related complexities. Artificial Intelligence (AI) has increasingly found its application in plant pathology, disease, and anomaly visual characterization. Specifically, Machine Learning (ML) and Deep Learning (DL) algorithms have proven to be highly effective for tasks such as plant disease classification, detection, diagnosis, and management. In this work, we present a comparative analysis of multiple DL models based on Convolutional Neural Networks (CNNs) for visual symptoms classification of the phytopathogen Ralstonia solanacearum in tomato plants. We demonstrate that by implementing DL classification algorithms based on CNNs, it is possible to identify Ralstonia solanacearum potentially affected plants. This was possible due to the main virulence factor of Ralstonia solanacearum, the exopolysaccharide (EPS), which obstructs the plant's xylem limiting water absorption and consequently inducing visual wilting symptoms. For this, we implemented, trained, and evaluated fourteen different CNN-based models. We evaluated the models by using different metrics such as precision, recall, accuracy, specificity, and F1-score. The models that obtained the best accuracy results were MobileNet-v2 and Xception, with an accuracy of 97.7% for both models. The presented findings significantly contribute to the visual symptoms classification of Ralstonia solanacearum in tomato plants, which may contribute to the control of this disease and its spread to healthy crops or other susceptible hosts in the future.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Agriculture, Multidisciplinary
Computer Science, Interdisciplinary Applications
Scopus
Agronomy And Crop Science
Computer Science Applications
Horticulture
Forestry
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 VASCONEZ-HURTADO, JUAN PABLO Hombre Universidad Nacional Andrés Bello - Chile
2 Vasconez, I. N. - Universidad Técnica Federico Santa María - Chile
Millennium Nucleus Bioprod Genom & Environm Microb - Chile
Avenida España 1680 - Chile
3 Moya, Viviana - Univ Int Ecuador - Ecuador
Universidad Internacional del Ecuador - Ecuador
4 Calderon-Diaz, M. J. - Universidad Nacional Andrés Bello - Chile
Universidad de Valparaíso - Chile
Millennium Inst Intelligent Healthcare Engn - Chile
Instituto Milenio en Ingeniería e Inteligencia Artificial para la Salud - Chile
5 VALENZUELA-ORMENO, MIRYAM Mujer Universidad Técnica Federico Santa María - Chile
Avenida España 1680 - Chile
6 BESOAIN-CANALES, XIMENA ALEJANDRA Mujer Universidad Técnica Federico Santa María - Chile
Millennium Nucleus Bioprod Genom & Environm Microb - Chile
Pontificia Universidad Católica de Valparaíso - Chile
Avenida España 1680 - Chile
7 SEEGER-PFEIFFER, MICHAEL Hombre Universidad Técnica Federico Santa María - Chile
Avenida España 1680 - Chile
8 Cheein, F. Auat - Harper Adams Univ - Reino Unido
Universidad Técnica Federico Santa María - Chile
8 AUAT-CHEEIN, FERNANDO ALFREDO Hombre Harper Adams University - Reino Unido
Universidad Técnica Federico Santa María - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Comisión Nacional de Investigación Científica y Tecnológica
Fondecyt de Iniciación
Universidad Andrés Bello
AC3E
Agencia Nacional de Investigación y Desarrollo
National Research and Development Agency
ANID - Millennium Science Initiative Program
FB0008
Faculty of Engineering, Universidad Andres Bello, Santiago, Chile
ANID-MILENIO
ANID-Subdirección de Capital Humano
ANID (National Research and Development Agency of Chile) under Fondecyt de Iniciacion

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors gratefully acknowledge the support provided by the Faculty of Engineering, Universidad Andres Bello, Santiago, Chile. This work has been supported by ANID (National Research and Development Agency of Chile) under Fondecyt de Iniciacion Grants 11240105 (JPV) and 11200593 (INV,MV). The Advanced Centre of Electrical and Electronic Engineering - AC3E, Chile (CONICYT/FB0008). This work was funded by ANID-Milenio-NCN2023_054 (INV, MV, XB, MS), and by ANID - Millennium Science Initiative Program - ICN2021_004 and ANID-Subdireccion de Capital Humano- 21221478.
The authors gratefully acknowledge the support provided by the Faculty of Engineering, Universidad Andres Bello, Santiago, Chile . This work has been supported by ANID (National Research and Development Agency of Chile) under Fondecyt de Iniciaci\u00F3n Grants 11240105 (JPV) and 11200593 (INV,MV) . The Advanced Centre of Electrical and Electronic Engineering \u2013 AC3E, Chile ( CONICYT/FB0008 ). This work was funded by Millennium Nucleus Center Bioproducts, Genomics and Environmental Microbiology (BioGEM) NCN2023_054 National Research and Development Agency (ANID) (INV, MV, XB, MS) , and by ANID \u2013 Millennium Science Initiative Program \u2013 ICN2021_004 and ANID - Subdirecci\u00F3n de Capital Humano - 21221478 .
The authors gratefully acknowledge the support provided by the Faculty of Engineering, Universidad Andres Bello, Santiago, Chile . This work has been supported by ANID (National Research and Development Agency of Chile) under Fondecyt de Iniciaci\u00F3n Grants 11240105 (JPV) and 11200593 (INV,MV) . The Advanced Centre of Electrical and Electronic Engineering \u2013 AC3E, Chile ( CONICYT/FB0008 ). This work was funded by Millennium Nucleus Center Bioproducts, Genomics and Environmental Microbiology (BioGEM) NCN2023_054 National Research and Development Agency (ANID) (INV, MV, XB, MS) , and by ANID \u2013 Millennium Science Initiative Program \u2013 ICN2021_004 and ANID - Subdirecci\u00F3n de Capital Humano - 21221478 .

Muestra la fuente de financiamiento declarada en la publicación.