Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.COMPAG.2024.109617 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Classification of plant diseases based on computer vision is a multidisciplinary challenge that involves technical and data-related complexities. Artificial Intelligence (AI) has increasingly found its application in plant pathology, disease, and anomaly visual characterization. Specifically, Machine Learning (ML) and Deep Learning (DL) algorithms have proven to be highly effective for tasks such as plant disease classification, detection, diagnosis, and management. In this work, we present a comparative analysis of multiple DL models based on Convolutional Neural Networks (CNNs) for visual symptoms classification of the phytopathogen Ralstonia solanacearum in tomato plants. We demonstrate that by implementing DL classification algorithms based on CNNs, it is possible to identify Ralstonia solanacearum potentially affected plants. This was possible due to the main virulence factor of Ralstonia solanacearum, the exopolysaccharide (EPS), which obstructs the plant's xylem limiting water absorption and consequently inducing visual wilting symptoms. For this, we implemented, trained, and evaluated fourteen different CNN-based models. We evaluated the models by using different metrics such as precision, recall, accuracy, specificity, and F1-score. The models that obtained the best accuracy results were MobileNet-v2 and Xception, with an accuracy of 97.7% for both models. The presented findings significantly contribute to the visual symptoms classification of Ralstonia solanacearum in tomato plants, which may contribute to the control of this disease and its spread to healthy crops or other susceptible hosts in the future.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | VASCONEZ-HURTADO, JUAN PABLO | Hombre |
Universidad Nacional Andrés Bello - Chile
|
| 2 | Vasconez, I. N. | - |
Universidad Técnica Federico Santa María - Chile
Millennium Nucleus Bioprod Genom & Environm Microb - Chile Avenida España 1680 - Chile |
| 3 | Moya, Viviana | - |
Univ Int Ecuador - Ecuador
Universidad Internacional del Ecuador - Ecuador |
| 4 | Calderon-Diaz, M. J. | - |
Universidad Nacional Andrés Bello - Chile
Universidad de Valparaíso - Chile Millennium Inst Intelligent Healthcare Engn - Chile Instituto Milenio en Ingeniería e Inteligencia Artificial para la Salud - Chile |
| 5 | VALENZUELA-ORMENO, MIRYAM | Mujer |
Universidad Técnica Federico Santa María - Chile
Avenida España 1680 - Chile |
| 6 | BESOAIN-CANALES, XIMENA ALEJANDRA | Mujer |
Universidad Técnica Federico Santa María - Chile
Millennium Nucleus Bioprod Genom & Environm Microb - Chile Pontificia Universidad Católica de Valparaíso - Chile Avenida España 1680 - Chile |
| 7 | SEEGER-PFEIFFER, MICHAEL | Hombre |
Universidad Técnica Federico Santa María - Chile
Avenida España 1680 - Chile |
| 8 | Cheein, F. Auat | - |
Harper Adams Univ - Reino Unido
Universidad Técnica Federico Santa María - Chile |
| 8 | AUAT-CHEEIN, FERNANDO ALFREDO | Hombre |
Harper Adams University - Reino Unido
Universidad Técnica Federico Santa María - Chile |
| Fuente |
|---|
| Comisión Nacional de Investigación Científica y Tecnológica |
| Fondecyt de Iniciación |
| Universidad Andrés Bello |
| AC3E |
| Agencia Nacional de Investigación y Desarrollo |
| National Research and Development Agency |
| ANID - Millennium Science Initiative Program |
| FB0008 |
| Faculty of Engineering, Universidad Andres Bello, Santiago, Chile |
| ANID-MILENIO |
| ANID-Subdirección de Capital Humano |
| ANID (National Research and Development Agency of Chile) under Fondecyt de Iniciacion |
| Agradecimiento |
|---|
| The authors gratefully acknowledge the support provided by the Faculty of Engineering, Universidad Andres Bello, Santiago, Chile. This work has been supported by ANID (National Research and Development Agency of Chile) under Fondecyt de Iniciacion Grants 11240105 (JPV) and 11200593 (INV,MV). The Advanced Centre of Electrical and Electronic Engineering - AC3E, Chile (CONICYT/FB0008). This work was funded by ANID-Milenio-NCN2023_054 (INV, MV, XB, MS), and by ANID - Millennium Science Initiative Program - ICN2021_004 and ANID-Subdireccion de Capital Humano- 21221478. |
| The authors gratefully acknowledge the support provided by the Faculty of Engineering, Universidad Andres Bello, Santiago, Chile . This work has been supported by ANID (National Research and Development Agency of Chile) under Fondecyt de Iniciaci\u00F3n Grants 11240105 (JPV) and 11200593 (INV,MV) . The Advanced Centre of Electrical and Electronic Engineering \u2013 AC3E, Chile ( CONICYT/FB0008 ). This work was funded by Millennium Nucleus Center Bioproducts, Genomics and Environmental Microbiology (BioGEM) NCN2023_054 National Research and Development Agency (ANID) (INV, MV, XB, MS) , and by ANID \u2013 Millennium Science Initiative Program \u2013 ICN2021_004 and ANID - Subdirecci\u00F3n de Capital Humano - 21221478 . |
| The authors gratefully acknowledge the support provided by the Faculty of Engineering, Universidad Andres Bello, Santiago, Chile . This work has been supported by ANID (National Research and Development Agency of Chile) under Fondecyt de Iniciaci\u00F3n Grants 11240105 (JPV) and 11200593 (INV,MV) . The Advanced Centre of Electrical and Electronic Engineering \u2013 AC3E, Chile ( CONICYT/FB0008 ). This work was funded by Millennium Nucleus Center Bioproducts, Genomics and Environmental Microbiology (BioGEM) NCN2023_054 National Research and Development Agency (ANID) (INV, MV, XB, MS) , and by ANID \u2013 Millennium Science Initiative Program \u2013 ICN2021_004 and ANID - Subdirecci\u00F3n de Capital Humano - 21221478 . |