Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/978-3-031-72104-5_59 | ||||
| Año | 2024 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Neural implicit k-space representations have shown promising results for dynamic MRI at high temporal resolutions. Yet, their exclusive training in k-space limits the application of common image regularization methods to improve the final reconstruction. In this work, we introduce the concept of parallel imaging-inspired self-consistency (PISCO), which we incorporate as novel self-supervised k-space regularization enforcing a consistent neighborhood relationship. At no additional data cost, the proposed regularization significantly improves neural implicit k-space reconstructions on simulated data. Abdominal in-vivo reconstructions using PISCO result in enhanced spatio-temporal image quality compared to state-of-the-art methods. Code is available at https://github.com/compai-lab/2024-miccai-spieker.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Spieker, Veronika | - |
Helmholtz Munich - Alemania
TECH UNIV MUNICH - Alemania Millenium Inst Intelligent Healthcare Engn - Chile Institute of Machine Learning in Biomedical Imaging - Alemania Technische Universität München - Alemania Instituto Milenio en Ingeniería e Inteligencia Artificial para la Salud - Chile |
| 2 | Eichhorn, Hannah | - |
Helmholtz Munich - Alemania
TECH UNIV MUNICH - Alemania Institute of Machine Learning in Biomedical Imaging - Alemania Technische Universität München - Alemania |
| 3 | Stelter, Jonathan K. | - |
TECH UNIV MUNICH - Alemania
Klinikum Rechts Der Isar - Alemania |
| 4 | Huang, Wenqi | - |
TECH UNIV MUNICH - Alemania
Klinikum Rechts Der Isar - Alemania |
| 5 | Braren, Rickmer F. | - |
TECH UNIV MUNICH - Alemania
German Canc Consortium DKTK - Alemania German Canc Res Ctr DKFZ Heidelberg - Alemania Klinikum Rechts Der Isar - Alemania German Cancer Research Center - Alemania |
| 6 | Rueckert, Daniel | - |
TECH UNIV MUNICH - Alemania
Imperial Coll London - Reino Unido Technische Universität München - Alemania Klinikum Rechts Der Isar - Alemania Imperial College London - Reino Unido |
| 7 | Sahli Costabal, Francisco | - |
Instituto Milenio en Ingeniería e Inteligencia Artificial para la Salud - Chile
Pontificia Universidad Católica de Chile - Chile Millenium Inst Intelligent Healthcare Engn - Chile |
| 7 | Costabal, Francisco Sahli | - |
Millenium Inst Intelligent Healthcare Engn - Chile
Pontificia Universidad Católica de Chile - Chile |
| 8 | Hammernik, Kerstin | - |
TECH UNIV MUNICH - Alemania
Technische Universität München - Alemania |
| 9 | PRIETO-VASQUEZ, CLAUDIA DEL CARMEN | Mujer |
Millenium Inst Intelligent Healthcare Engn - Chile
Pontificia Universidad Católica de Chile - Chile Kings Coll London - Reino Unido Instituto Milenio en Ingeniería e Inteligencia Artificial para la Salud - Chile King's College London - Reino Unido |
| 10 | Karampinos, Dimitrios C. | - |
TECH UNIV MUNICH - Alemania
Klinikum Rechts Der Isar - Alemania |
| 11 | Schnabel, Julia A. | - |
Helmholtz Munich - Alemania
TECH UNIV MUNICH - Alemania Kings Coll London - Reino Unido Institute of Machine Learning in Biomedical Imaging - Alemania Technische Universität München - Alemania King's College London - Reino Unido |
| 12 | Linguraru, MG | - | |
| 13 | Dou, Q | - | |
| 14 | Feragen, A | - | |
| 15 | Giannarou, S | - | |
| 16 | Glocker, B | - | |
| 17 | Lekadir, K | - | |
| 18 | Schnabel, JA | - |
| Fuente |
|---|
| Helmholtz Association |
| Helmholtz Association under the joint research school "Munich School for Data Science - MUDS" |
| Agradecimiento |
|---|
| V.S. and H.E. are partially supported by the Helmholtz Association under the joint research school "Munich School for Data Science - MUDS". |
| V.S. and H.E. are partially supported by the Helmholtz Association under the joint research school \u201CMunich School for Data Science - MUDS\u201D. |