Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Heuristics to reduce linear combinations of activation functions to improve image classification
Indexado
WoS WOS:001324860100029
Scopus SCOPUS_ID:85204369599
DOI 10.1109/SIBGRAPI59091.2023.10347043
Año 2023
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Image classification is one of the classical problems in computer vision, and CNNs (Convolutional Neural Networks) are widely used for this task. However, the choice of a CNN can vary depending on the chosen dataset. In this context, we have trainable activation functions that are crucial in CNNs and adapt to the data. One technique for constructing these functions is to write them as a linear combination of other activation functions, where the coefficients of this combination are learned during training. However, if we have a large number of activation functions to combine, the computational cost can be very high, and manually testing and choosing these functions may be impractical, depending on the number of available activation functions. To alleviate the difficulty of choosing which activation functions should be part of the linear combination, we propose two heuristics: Linear Combination Approximator by Coefficients (LCAC) and Major and Uniform Coefficient Extractor (MUCE). Our heuristics provide an efficient selection of a subset of activation functions so that their results are better or equivalent to the linear combination that uses all 34 available activation functions in our experiments (C34), considering the image classification problem. Compared to the C34 function, the LCAC function was better or equivalent in 62.5%, and the MUCE function in 87.5% of the conducted experiments.

Revista



Revista ISSN
1530-1834

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 De Moraes, Rogerio Ferreira - Universidade Federal Fluminense - Brasil
Univ Fed Fluminense UFF - Brasil
2 Evangelista, Raphael dos S. - Universidade Federal Fluminense - Brasil
Univ Fed Fluminense UFF - Brasil
3 Pereira, Andre Luiz da S. - Universidade Federal Fluminense - Brasil
Univ Fed Fluminense UFF - Brasil
4 Toledo, Yanexis Pupo - Universidade Federal Fluminense - Brasil
Univ Fed Fluminense UFF - Brasil
5 Fernandes, Leandro A.F. - Universidade Federal Fluminense - Brasil
5 Fernandes, Leandro A. F. - Univ Fed Fluminense UFF - Brasil
Universidade Federal Fluminense - Brasil
6 Marti, Luis - INRIA - Chile
7 Emmendorfer, LR -
8 Goncalves, LMG -

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Agencia Nacional de Investigación y Desarrollo
ANID International Centers of Excellence Program

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This project was funded in part by ANID International Centers of Excellence Program 10CEII-9157/CTI220002 Inria Chile, Inria Challenge OceanIA and Inria associated team SusAIn.
This project was funded in part by ANID International Centers of Excellence Program 10CEII-9157/CTI220002 Inria Chile, Inria Challenge Oc ' eanIA and Inria associated team SusAIn.

Muestra la fuente de financiamiento declarada en la publicación.