Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Simple Online Learning with Consistent Oracle
Indexado
WoS WOS:001347137103007
Scopus SCOPUS_ID:85203680860
DOI
Año 2024
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



We consider online learning in the model where a learning algorithm can access the class only via the consistent oracle-an oracle, that, at any moment, can give a function from the class that agrees with all examples seen so far. This model was recently considered by Assos et al. (COLT'23). It is motivated by the fact that standard methods of online learning rely on computing the Littlestone dimension of subclasses, a computationally intractable problem. Assos et al. gave an online learning algorithm in this model that makes at most Cd mistakes on classes of Littlestone dimension d, for some absolute unspecified constant C > 0. We give a novel algorithm that makes at most O(256d) mistakes. Our proof is significantly simpler and uses only very basic properties of the Littlestone dimension. We also show that there exists no algorithm in this model that makes less than 3d mistakes. Our algorithm (as well as the algorithm of Assos et al.) solves an open problem by Hasrati and Ben-David (ALT'23). Namely, it demonstrates that every class of finite Littlestone dimension with recursively enumerable representation admits a computable online learner (that may be undefined on unrealizable samples).

Revista



Revista ISSN
2640-3498

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Kozachinskiy, Alexander - Centro Nacional de Inteligencia Artificial (CENIA) - Chile
Instituto Milenio Fundamentos de los Datos - Chile
2 Steifer, Tomasz - Instituto Milenio Fundamentos de los Datos - Chile
Institute of Fundamental Technological Research of the Polish Academy of Sciences - Polonia
Pontificia Universidad Católica de Chile - Chile
Polish Acad Sci - Polonia
3 Agrawal, S -
4 Roth, A -

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Agencia Nacional de Investigación y Desarrollo
Millennium Science Initiative Program
National Center for Artificial Intelligence CENIA
National Center for Artificial Intelligence, Basal ANID

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was supported by the Millennium Science Initiative Program - Code ICN17002. Additionally, Kozachinskiy was partially funded by the National Center for Artificial Intelligence CENIA FB210017, Basal ANID. Steifer was supported by the Agencia Nacional de Investigaci\u00F3n y Desarrollo grant no. 3230203.
This research was supported by the Millennium Science Initiative Program -Code ICN17002. Additionally, Kozachinskiy was partially funded by the National Center for Artificial Intelligence CENIA FB210017, Basal ANID. Steifer was supported by the Agencia Nacional de Investigacion y Desarrollo grant no. 3230203.

Muestra la fuente de financiamiento declarada en la publicación.