Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Artificial Intelligence in Urology: Application of a Machine Learning Model to Predict the Risk of Urolithiasis in a General Population
Indexado
Scopus SCOPUS_ID:85198668364
DOI 10.1089/END.2023.0702
Año 2024
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



This research presents our application of artificial intelligence (AI) in predicting urolithiasis risk. Previous applications, including AI for stone disease, have focused on stone composition and aiding diagnostic imaging. AI applications centered around patient-specific characteristics, lifestyle considerations, and diet have been limited. Our study comprised a robust sample size of 976 Chilean participants, with meticulously analyzed demographic, lifestyle, and health data through a comprehensive questionnaire. We developed a predictive model using various classifiers, including logistic regression, decision trees, random forests, and extra trees, reaching high accuracy (88%) in identifying individuals at risk of kidney stone formation. Key protective factors highlighted by the algorithm include the pivotal role of hydration, physical activity, and dietary patterns that played a crucial role, emphasizing the protective nature of higher fruit and vegetable intake, balanced dairy consumption, and the nuanced impact of specific protein sources on kidney stone risk. In contrast, identified risk factors encompassed gender disparities with males found to be 2.31 times more likely to develop kidney stones than females. Thirst and self-perceived dark urine color emerged as strong predictors, with a significant increase in the likelihood of stone formation. The development of predictive tools with AI, in urolithiasis management signifies a paradigm shift toward more precise and personalized health care. The algorithm’s ability to process extensive datasets, including dietary habits, heralds a new era of data-driven medical practice. This research underscores the transformative impact of AI in medical diagnostics and prevention, paving the way for a future where health care interventions are not only more effective but also tailored to individual patient needs. In this case, AI is an important tool that can help patients stay healthy, prevent diseases, and make informed decisions about their overall well-being.

Revista



Revista ISSN
Journal Of Endourology 0892-7790

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Urology & Nephrology
Scopus
Urology
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 SANCHEZ-NUNEZ, CATHERINE ANDREA Mujer Clinica Meds, Chile - Chile
Universidad de Chile - Chile
2 Larenas, Francisca - Universidad de Chile - Chile
Hospital Clínico San Borja Arriaran - Chile
3 Arroyave, Juan Sebastian - Icahn School of Medicine at Mount Sinai - Estados Unidos
4 Connors, Christopher - Icahn School of Medicine at Mount Sinai - Estados Unidos
5 Gimenez, Belen - Universidad de Chile - Chile
Hospital Clínico San Borja Arriaran - Chile
6 Palese, Michael A. - Icahn School of Medicine at Mount Sinai - Estados Unidos
7 FULLA-ORTIZ, JUAN ANDRES Hombre Clinica Meds, Chile - Chile
Universidad de Chile - Chile
Hospital Clínico San Borja Arriaran - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.