Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1016/J.NANOSO.2024.101294 | ||
| Año | 2024 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Fractal and optical characteristics of self-affine surfaces of silver(Ag) thin films deposited through direct current (dc) magnetron sputtering as a function of thickness are investigated and explored here. The surface morphology of Ag thin films is characterized by field emission electron microscopy, and atomic force microscopy technique. The cube counting algorithm is used to extract the fractal dimension of Ag thin film. The surface roughness (interface width) shows monotonic increases with film thickness, while the other parameters, such as lateral correlation length, roughness exponent, and fractal dimension exhibit linear variation with thickness. Our findings reveal distinctive scaling behaviors, with scaling exponents α, β, and 1/z indicating unique growth characteristics. The interface width w increases as a power law of thickness t, w(t)∝tβ, with β=0.39± 0.007, and the lateral correlation length ξ grows as ξt∝t1/z with 1/z=0.14± 0.002. The roughness exponent extracted from height-height correlation analysis is α=0.61–0.41. The self-affine nature of the Ag thin films is further confirmed by the autocorrelation function. X-ray photoelectron spectroscopy (XPS) is used to the confirm the growth of Ag thin film. Additionally, we have studied the role of fractal dimensions and lateral correlation length (ξ) on the surface plasmon resonance (SPR) of Ag thin film. Our results indicate a red-shifting behavior of SPR with increasing interface width (w), lateral correlation length (ξ), and fractal dimensions. This study suggests the significance of not only the roughness exponent and fractal dimension but also the local surface slope in SPR activity in Ag thin films.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Kumar, Chandra | - |
Universidad Mayor - Chile
|
| 2 | Shrivastav, Monika | - |
Malaviya National Institute of Technology Jaipur - India
|
| 3 | Escrig, Juan | - |
Universidad de Santiago de Chile - Chile
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile |
| 4 | Palma, Juan Luis | - |
Universidad Central de Chile - Chile
|
| 5 | Ţălu, Ştefan | - |
Universitatea Tehnica din Cluj-Napoca - Rumania
|
| 6 | Guzman, Fernando | - |
Universidad Católica del Norte - Chile
|
| 7 | Yadav, Ram Pratap | - |
Govt. Post Graduate College - India
Mahamaya Government Degree College Manjhanpur - India |
| Fuente |
|---|
| FONDEQUIP |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia |
| Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Santiago de Chile |
| Agencia Nacional de Investigación y Desarrollo |
| POSTDOC_ANID |
| Agradecimiento |
|---|
| This work was supported by ANID through Financiamiento Basal para Centros Cient\u00EDficos y Tecnol\u00F3gicos de Excelencia (Grant AFB220001), Chile. We also acknowledge support from FONDECYT (Grant 1240829), POSTDOC_DICYT (Grant 042331EM_Postdoc) and POSTDOC_ANID (Grant 3240551). Also, the authors acknowledge the Fondequip (EQM 210088). |
| This work was supported by ANID through Financiamiento Basal para Centros Cient\u00EDficos y Tecnol\u00F3gicos de Excelencia (Grant AFB220001), Chile. We also acknowledge support from FONDECYT (Grant 1200302) and POSTDOC_DICYT (Grant 042331EM_Postdoc). |