Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.CERAMINT.2024.08.011 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Here, we report room temperature deposition of nickel oxide (NiO) thin films on silicon and glass substrates by direct current (dc) magnetron sputtering using a metallic nickel target. The effect of sputtering power (20 W, 25 W, and 30 W) on the thin films, their surface scaling, fractal dimension, and optical properties are extensively investigated. Autocorrelation and height–height correlation functions were applied to AFM images to extract deep insights about the thin films' surfaces. Fractal dimension (Df) was extracted through the power spectral density (PSD) function. Various scaling exponents, including α, β, and 1/z, of the NiO film's surface were independently observed. The local roughness exponent, α, was approximately 0.81 for films deposited with 20 W sputtering power and decreased to 0.71 with higher sputtering power. The interface width (σ) scales with sputtering power (Sp) as ∼ Spβ, with a growth exponent (β) value of 1.17. The lateral correlation length (ξ) follows as ∼ Sp1/z with a 1/z value of 0.703. Additionally, optical parameters were recorded through UV–Vis. optical spectroscopy, and an attempt was made to correlate them with fractal parameters (Df & α). Optical absorption (reflection) increased (decreased) with increasing Df values. The minimum (maximum) reflection (absorption) was observed on the roughest surface (Df = 2.29). The calculated band gap decreased with increasing fractal dimension. This investigation suggests that sputtered surfaces with minimal reflectivity, band gap, and enhanced light-absorbing capacity could potentially be used as active solar layers for advanced optoelectronic devices.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Kumar, Chandra | - |
Universidad Mayor - Chile
|
| 2 | Shrivastav, Monika | - |
Malaviya National Institute of Technology Jaipur - India
Malaviya Natl Inst Technol - India |
| 3 | Escrig, Juan | - |
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile
Universidad de Santiago de Chile - Chile |
| 4 | PALMA-SOLORZA, JUAN LUIS | Hombre |
Universidad Central de Chile - Chile
|
| 5 | Yadav, R. P. | - |
Govt. P.G. College - India
Mahamaya Government Degree College Manjhanpur - India Govt PG Coll - India Mahamaya Govt Degree Coll Manjhanpur - India |
| 6 | Silva, Héctor | - |
Universidad de Antofagasta - Chile
|
| 7 | Zarate, Antonio | - |
Universidad Católica del Norte - Chile
|
| Fuente |
|---|
| FONDECYT |
| FONDEQUIP |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad Católica del Norte |
| Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia |
| CEDENNA through Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia |
| Centro para el Desarrollo de la Nanociencia y la Nanotecnologia |
| POSTDOC_ANID |
| Agradecimiento |
|---|
| This work was supported by CEDENNA through Financiamiento Basal para Centros Cient\u00EDficos y Tecnol\u00F3gicos de Excelencia (Grant AFB220001). We also acknowledge support from FONDECYT (Grant 1240829) and POSTDOC_ANID (Grant 3240551). The authors acknowledge FONDECYT 1130984, FONDEQUIP EQM160120. Also, the authors acknowledge the Maine, UCN for UV-Vis. optical spectroscopy |
| This work was supported by CEDENNA through Financiamiento Basal para Centros Cient\u00EDficos y Tecnol\u00F3gicos de Excelencia (Grant AFB220001). We also acknowledge support from FONDECYT (Grant 1240829) and POSTDOC_ANID (Grant 3240551). The authors acknowledge FONDECYT 1130984, FONDEQUIP EQM160120. Also, the authors acknowledge the Maine, UCN for UV-Vis. optical spectroscopy |
| This work was supported by CEDENNA through Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia (Grant AFB220001) . We also acknowledge support from FONDECYT (Grant 1240829) and POSTDOC_ANID (Grant 3240551) . The fondequip (EQM 210088) was supported for AFM testing. The authors acknowledge FONDECYT 1130984, FONDEQUIP EQM160120. Also, the authors acknowledge the Maini, UCN for UV-Vis. optical spectroscopy. |