Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1016/J.COMPBIOMED.2024.109022 | ||
| Año | 2024 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Dementia arises from various brain-affecting diseases and injuries, with Alzheimer's disease being the most prevalent, impacting around 55 million people globally. Current clinical diagnosis often relies on biomarkers indicative of Alzheimer's distinctive features. Electroencephalography (EEG) serves as a cost-effective, user-friendly, and safe biomarker for early Alzheimer's detection. This study utilizes EEG signals processed with Short-Time Fourier Transform (STFT) to generate spectrograms, facilitating visualization of EEG signal properties. Leveraging the Brainlat database, we propose SpectroCVT-Net, a novel convolutional vision transformer architecture incorporating channel attention mechanisms. SpectroCVT-Net integrates convolutional and attention mechanisms to capture local and global dependencies within spectrograms. Comprising feature extraction and classification stages, the model enhances Alzheimer's disease classification accuracy compared to transfer learning methods, achieving 92.59 ± 2.3% accuracy across Alzheimer's, healthy controls, and behavioral variant frontotemporal dementia (bvFTD). This article introduces a new architecture and evaluates its efficacy with unconventional data for Alzheimer's diagnosis, contributing: SpectroCVT-Net, tailored for EEG spectrogram classification without reliance on transfer learning; a convolutional vision transformer (CVT) module in the classification stage, integrating local feature extraction with attention heads for global context analysis; Grad-CAM analysis for network decision insight, identifying critical layers, frequencies, and electrodes influencing classification; and enhanced interpretability through spectrograms, illuminating key brain wave contributions to Alzheimer's, frontotemporal dementia, and healthy control classifications, potentially aiding clinical diagnosis and management.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Bravo-Ortiz, Mario Alejandro | - |
Universidad Autónoma de Manizales - Colombia
BIOS - Centro de Bioinformática y Biología Computacional de Colombia - Colombia |
| 2 | Guevara-Navarro, Ernesto | - |
Universidad Autónoma de Manizales - Colombia
|
| 3 | Holguín-García, Sergio Alejandro | - |
Universidad Autónoma de Manizales - Colombia
BIOS - Centro de Bioinformática y Biología Computacional de Colombia - Colombia |
| 4 | Rivera-Garcia, Mariana | - |
Universidad Autónoma de Manizales - Colombia
|
| 5 | Cardona-Morales, Oscar | Hombre |
Universidad Autónoma de Manizales - Colombia
|
| 6 | RUZ-HEREDIA, GONZALO ANDRES | Hombre |
Universidad Adolfo Ibáñez - Chile
Centro de Ecología Aplicada y Sustentabilidad - Chile Data Observatory Foundation - Chile |
| 7 | Tabares-Soto, Reinel | - |
Universidad Autónoma de Manizales - Colombia
Universidad de Caldas - Colombia Universidad Adolfo Ibáñez - Chile |
| Agradecimiento |
|---|
| Mario Alejandro Bravo-Ortiz is supported by a Ph.D. grant Convocatoria 22 OCAD de Ciencia, Tecnolog\u00EDa e Innovaci\u00F3n del Sistema General de Regal\u00EDas de Colombia Ministerio de Ciencia, Tecnolog\u00EDa e Innovaci\u00F3n de Colombia . We would like to thank Universidad Aut\u00F3noma de Manizales for making this paper as part of the \u201CClasificaci\u00F3n de los estadios del Alzheimer utilizando Im\u00E1genes de Resonancia Magn\u00E9tica Nuclear datos cl\u00EDnicos a partir de t\u00E9cnicas de Deep Learning \u201D with code 873-139 and \u201C Aplicaci\u00F3n de Vision Transformer para clasificar estadios del Alzheimer utilizando im\u00E1genes de resonancia magn\u00E9tica nuclear datos cl\u00EDnicos \u201D project with code 847-2023 TD also to the projects ANID PIA/BASAL FB0002 and ANID/PIA/ANILLO ACT210096. additionally, we thank universidad de Caldas for their support, as this paper is part of the project \u201Cplataforma tecnol\u00F3gica para la clasificaci\u00F3n de los estadios de la enfermedad de alzheimer utilizando im\u00E1genes de resonancia magn\u00E9tica nuclear, datos cl\u00EDnicos t\u00E9cnicas de deep learning\u201D. with code PRY-89. |