Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Water Content Classification on Leaves Based on Multi-Spectral Imagery and Machine Learning Techniques for Wildfire Prevention
Indexado
Scopus SCOPUS_ID:85195779351
DOI 10.1109/ICIT58233.2024.10540771
Año 2024
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Leaves with lower water content serve as fuel, increasing the risk of wildfires. Identifying such leaves can improve decisions aimed at wildfire prevention. This work proposes the classification of Eucalyptus globulus leaves based on their moisture content using multi-spectral and RGB images in conjunction with deep convolutional neural networks. For this study, 100 leaves of Eucalyptus Globulus were collected and subjected to a controlled drying process in an oven, resulting in five different stages of dehydration, namely fresh leaves, stages 1 to 3 of dehydration, and fully dry leaves. At the different stages of the drying process, images of the leaves were collected using a multispectral camera (red, green, blue, red edge, and near-infrared bands). Using these images as input, deep convolutional networks were trained to classify each image according to its drying stage. The networks are composed of an input layer, a feature-extraction backbone, and a final classification layer. Various commonly used feature-extraction networks for image classification served as backbones, namely AlexNet, InceptionV3, MobileNet, ResNet50, VGG16, VGG19, and Xception. The models were evaluated using accuracy, precision, recall, and F1 score metrics. The most successful model achieved an accuracy of 0.813 using Xception as a backbone and multi-spectral images as inputs. This work demonstrates the potential of deep-learning architectures for the classification of leaves according to their drying stage.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Estrada, Juan Sebastian - Universidad Técnica Federico Santa María - Chile
2 Zanartu, Matias - Universidad Técnica Federico Santa María - Chile
3 Demarco, Rodrigo - Universidad Técnica Federico Santa María - Chile
4 Fuentes, Andres - Universidad Técnica Federico Santa María - Chile
5 Cheein, Fernando Auat - Universidad Técnica Federico Santa María - Chile
Heriot-Watt University - Reino Unido

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Agencia Nacional de Investigación y Desarrollo

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Funded by ANID FB0008, ANID SCIA-ANILLO ACT210052 and ANID national doctorate scholarship, folio N\u00B0 123123123

Muestra la fuente de financiamiento declarada en la publicación.