Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1109/ICC51166.2024.10622646 | ||||
| Año | 2024 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Currently, phishing attacks are posing great damage to the online community. As traditions, attack detection strategies are not effective against this new type of threat. Hence, there is a need for advanced attack detection techniques. In this context, this research proposed a hybrid deep learning and big data-based technique for phishing attack detection approach. Our proposed approach used Conv2d layers in sequence for analysis of the incoming traffic and predict its behavior. We used different parameters to measure our proposed approach. Through the use of the cuckoo optimization algorithm, the propsed approach achieves a high accuracy of 92%.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Gupta, Brij B. | - |
Asia University - Taiwán
Asia Univ - Taiwán |
| 2 | Gaurav, Akshat | - |
Ronin Institute - Estados Unidos
Ronin Inst - Estados Unidos |
| 3 | Wu, Jinsong | - |
Guilin University of Electronic Technology - China
Universidad de Chile - Chile Guilin Univ Elect Technol - China |
| 4 | Arya, Varsha | - |
Asia University - Taiwán
Asia Univ - Taiwán |
| 5 | Chui, Kwok Tai | - |
Hong Kong Metropolitan University - Hong Kong
HKMU - China |
| 6 | Valenti, M | - | |
| 7 | Reed, D | - | |
| 8 | Torres, M | - |
| Fuente |
|---|
| National Science and Technology Council |
| National Science and Technology Council (NSTC), Taiwan |