Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1515/CDBME-2024-0123 | ||
| Año | 2024 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Minimally Invasive Robotic Surgery (MIRS) has emerged as a transformative approach in surgical practice, offering reduced patient trauma and enhanced precision. However, challenges persist, including the loss of tactile feedback for surgeons. This study explores the application of machine learning algorithms, specifically variational autoencoders, in vibro-acoustic (VA) signal analysis to address this issue. Our comparative analysis evaluates the potential of supervised learning in surgical data analysis, contributing to advancements in surgical technology. Despite achieving an accuracy of 81%, our results indicate opportunities for further refinement, considering the superior accuracies reported in previous studies. This research underscores the importance of innovative approaches in medical data analysis for optimizing patient care in minimally invasive surgery.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Urrutia, Robin | - |
Universidad Austral de Chile - Chile
|
| 2 | Espejo, Diego | - |
Universidad Austral de Chile - Chile
|
| 3 | Sühn, Thomas | - |
SURAG Medical GmbH - Alemania
Otto-von-Guericke-Universität Magdeburg - Alemania |
| 4 | Guerra, Montserrat | - |
Universidad Austral de Chile - Chile
|
| 5 | FUENTEALBA-ROSAS, PATRICIO ARMANDO | Hombre |
Universidad Austral de Chile - Chile
|
| 6 | Poblete, Victor | - |
Universidad Austral de Chile - Chile
|
| 7 | Boese, Axel | Hombre |
Otto-von-Guericke-Universität Magdeburg - Alemania
|
| 8 | Illanes, Alfredo | - |
SURAG Medical GmbH - Alemania
|