Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.JALLCOM.2024.176382 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We investigated the effects of annealing temperatures (TA) on a Pd (5 nm)/CoFeB (10 nm)/Pd (3 nm)/Ta (10 nm) multilayer structure. The as-deposited sample showed an amorphous state with in-plane uniaxial magnetic anisotropy (UMA), resulting in low coercivity and moderate Gilbert damping constant (α) values. Increasing TA led to crystallization, forming bcc-CoFe (110) crystals, which increased in-plane coercivity and introduced isotropic magnetic anisotropy, slightly reducing the α. The two-fold UMA persists up to 600 °C, and the thermal stability of the in-plane magnetic anisotropy remains intact even TA = 700 °C. The TA significantly influenced the magnetic properties such as in-plane saturation magnetization (Ms//), in-plane and out-of-plane coercivities (Hc// and Hc⊥), and in-plane effective magnetic anisotropy energy density (Keff). Above 600 °C, Keff decreased, indicating a transition towards uniaxial perpendicular magnetic anisotropy. Interfacial oxidation and diffusion from the Ta capping layer to the Pd/CoFeB/Pd interfaces were observed, influencing chemical bonding states. Annealing at 700 °C, reduced oxygen within TaOx through a redox reaction involving Ta crystallization, forming TaB, PdO, and BOx states. Ferromagnetic resonance spectra analysis indicated variations in resonance field (Hr) due to local chemical environments. The α reduction, reaching a minimum at 300 °C annealing, was attributed to reduced structural disorder from inhomogeneities. Tailoring magnetic anisotropy and spin dynamic properties in Pd/CoFeB/Pd/Ta structures through TA-controlled oxygen diffusion/oxidation highlights their potential for SOT, DMI, and magnetic skyrmion-based spintronic devices.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Lakshmanan, Saravanan | - |
Universidad Técnica Federico Santa María - Chile
|
| 2 | Romanque-Albornoz, Cristian | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 3 | Mery, Mario | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 4 | Muthuvel, Manivel Raja | - |
DRDO Defence Metallurgical Research Laboratory - India
Def Met Res Lab - India |
| 5 | Gupta, Nanhe Kumar | - |
Indian Institute of Technology Delhi - India
Indian Inst Technol Delhi - India |
| 6 | Garcia, Carlos | - |
Universidad Técnica Federico Santa María - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Horizon 2020 |
| Horizon 2020 Framework Programme |
| ANID FONDEQUIP |
| Agradecimiento |
|---|
| L. Saravanan acknowledges to FONDECYT Postdoctorado 2022 ANID, 3220373. C. Garcia acknowledges the financial support received by ANID FONDECYT/Regular 1201102, ANID FONDECYT/Regular 1241918, ANID FONDEQUIP EQM140161, and ANID FONDEQUIP EQM 150094. This work was also supported by the European Union\u2019s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 734801 (MAGNAMED) and No. 101007825 (ULTIMATE-I). |
| L. Saravanan acknowledges to FONDECYT Postdoctorado 2022 ANID, 3220373. C. Garcia acknowledges the financial support received by ANID FONDECYT/Regular 1201102, ANID FONDECYT/Regular 1241918, ANID FONDEQUIP EQM140161, and ANID FONDEQUIP EQM 150094. This work was also supported by the European Union\u2019s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 734801 (MAGNAMED) and No. 101007825 (ULTIMATE-I). |