Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Comparison of Faster R-CNN, YOLO, and SSD for Third Molar Angle Detection in Dental Panoramic X-rays
Indexado
WoS WOS:001323494300001
Scopus SCOPUS_ID:85205288676
DOI 10.3390/S24186053
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The use of artificial intelligence algorithms (AI) has gained importance for dental applications in recent years. Analyzing AI information from different sensor data such as images or panoramic radiographs (panoramic X-rays) can help to improve medical decisions and achieve early diagnosis of different dental pathologies. In particular, the use of deep learning (DL) techniques based on convolutional neural networks (CNNs) has obtained promising results in dental applications based on images, in which approaches based on classification, detection, and segmentation are being studied with growing interest. However, there are still several challenges to be tackled, such as the data quality and quantity, the variability among categories, and the analysis of the possible bias and variance associated with each dataset distribution. This study aims to compare the performance of three deep learning object detection models—Faster R-CNN, YOLO V2, and SSD—using different ResNet architectures (ResNet-18, ResNet-50, and ResNet-101) as feature extractors for detecting and classifying third molar angles in panoramic X-rays according to Winter’s classification criterion. Each object detection architecture was trained, calibrated, validated, and tested with three different feature extraction CNNs which are ResNet-18, ResNet-50, and ResNet-101, which were the networks that best fit our dataset distribution. Based on such detection networks, we detect four different categories of angles in third molars using panoramic X-rays by using Winter’s classification criterion. This criterion characterizes the third molar’s position relative to the second molar’s longitudinal axis. The detected categories for the third molars are distoangular, vertical, mesioangular, and horizontal. For training, we used a total of 644 panoramic X-rays. The results obtained in the testing dataset reached up to 99% mean average accuracy performance, demonstrating the YOLOV2 obtained higher effectiveness in solving the third molar angle detection problem. These results demonstrate that the use of CNNs for object detection in panoramic radiographs represents a promising solution in dental applications.

Revista



Revista ISSN
Sensors 1424-8220

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Chemistry, Analytical
Instruments & Instrumentation
Engineering, Electrical & Electronic
Electrochemistry
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Vilcapoma, Piero - Universidad Nacional Andrés Bello - Chile
2 Parra Meléndez, Diana - Universidad de las Americas - Ecuador - Ecuador
Univ Amer - Ecuador
3 FERNANDEZ-VALDES, ALEJANDRA Mujer Facultad de Odontología - Chile
Universidad Nacional Andrés Bello - Chile
4 Vásconez, Ingrid Nicole - Universidad Técnica Federico Santa María - Chile
5 Hillmann, Nicolás Corona - Facultad de Odontología - Chile
Universidad Nacional Andrés Bello - Chile
6 Gustavo, Gatica Hombre Universidad Nacional Andrés Bello - Chile
7 VASCONEZ-HURTADO, JUAN PABLO Hombre Universidad Nacional Andrés Bello - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad Andrés Bello
Agencia Nacional de Investigación y Desarrollo
National Research and Development Agency of Chile
Energy Transformation Center, Faculty of Engineering, Universidad Andres Bello
National Research and Development Agency of Chile (ANID) under Fondecyt Iniciacion

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was funded by National Research and Development Agency of Chile (ANID) under Fondecyt Iniciacion 2024 grant number 11240105. This research also was funded by Energy Transformation Center, Faculty of Engineering, Universidad Andres Bello.
This work has been supported by ANID (National Research and Development Agency of Chile) under Fondecyt Iniciaci\u00F3n 2024 Grant 11240105.

Muestra la fuente de financiamiento declarada en la publicación.