Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



In-depth analysis of automated baggage inspection using simulated X-ray images of 3D models
Indexado
Scopus SCOPUS_ID:85200136864
DOI 10.1007/S00521-024-10159-5
Año 2024
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



X-ray baggage inspection ensures transport and border security, as it prevents hazardous objects from entering secure areas. Currently, deep learning is the state-of-the-art approach for automated threat object detection and classification. These networks require extensive training data; however, the number of publicly available datasets of X-ray images is limited. To overcome this, we propose an image generation pipeline that generates new data by superimposing simulated X-ray images of 3D models onto real baggage X-rays. This approach allows researchers to train deep neural networks without requiring additional imaging or manual labeling. The effectiveness and reliability of our image simulation pipeline are demonstrated, integrating advanced techniques such as distortion with diffusion models. We conducted hundreds of YOLOv5 trainings with a combination of real images from the SIXray dataset and simulated X-rays containing wrenches and handguns. Testing was performed exclusively on unaltered real images. Training exclusively with 16,000 simulated images of grayscale wrenches resulted in an AP0.5 of 72.7%. For the handguns, using only 50 real images yielded an AP0.5 of 78.8%; however, by adding 16,000 simulated X-rays to these real images, the AP0.5 increased to 91.6%. Our results prove that using simulated images of threat objects can improve the performance of object detection models. As modern object detectors process images in real-time, they establish themselves as a feasible approach for aiding inspectors and even fully automating baggage inspection. Our novel superimposition and colorization techniques are not only relevant to security but can also be employed in other areas of X-ray imaging.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Artificial Intelligence
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Kaminetzky, Alejandro Hombre Pontificia Universidad Católica de Chile - Chile
2 MERY-QUIROZ, DOMINGO Hombre Pontificia Universidad Católica de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
ANID
National Center for Artificial Intelligence CENIA

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported by National Center for Artificial Intelligence CENIA FB210017, Basal ANID, FONDECYT grant No. 1191131 from ANID Chile, and ANID National Master\u2019s Scholarship 2021 No. 22211094.

Muestra la fuente de financiamiento declarada en la publicación.