Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Enhanced Maximum Power Point Tracking Using Modified PSO Hybrid with MPC under Partial Shading Conditions
Indexado
WoS WOS:001336103900001
Scopus SCOPUS_ID:85205848774
DOI 10.1109/ACCESS.2024.3471829
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Conventional methodologies such as Incremental Conductance (IC) and Perturbation and Observation (P&O) can be considered effective and low-cost solutions for PV Maximum Power Point Tracking (MPPT) problems in most cases. However, these methods fail to guarantee global maximum tracking in certain situations, such as multiple peak challenges caused by Partial Shading Conditions (PSCs). Therefore, metaheuristic algorithms, like Particle Swarm Optimization (PSO), are employed in literature to address the MPPT problems during PSCs. Nevertheless, traditional PSO encounters issues such as slow convergence and a high probability of failure in tracking the global maximum power point during complex PSCs, which cause a reduction of system efficiency. To address these issues, a modified PSO hybrid with a finite control set Model Predictive Control (MPSO-MPC) has been developed as a robust MPPT technique. The MPC is incorporated into the proposed method to increase the tracking speed. The proposed approach combines a new initialization scheme that ensures uniform initial population distribution across the P-I curve. Additionally, an innovative method is used to update the search space once the partial shading pattern is detected to include only the feasible solutions in the search process. Finally, Incremental Conductance (IC) is introduced to refine the tracking process of global peak and increase its efficiency. The proposed MPSO-MPC algorithm is implemented using dSPACE MicroLabBox for real-time applications. Comprehensive investigations through MATLAB/Simulink simulation and experimental studies validate that the developed method outperforms traditional PSO and Cuckoo Search (CS) algorithms, with a convergence time that does not exceed 0.35 s and a tracking efficiency above 99.5 % under various complex PSCs. Furthermore, the results demonstrate that the proposed technique outperforms both PSO and CS across a range of environmental conditions and load disturbances.

Revista



Revista ISSN
Ieee Access 2169-3536

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Information Systems
Telecommunications
Engineering, Electrical & Electronic
Scopus
Materials Science (All)
Computer Science (All)
Engineering (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Hendy, Mohamed A. - Faculty of Engineering - Egipto
Assiut Univ - Egipto
2 Nayel, Mohamed A. - Faculty of Engineering - Egipto
Assiut Univ - Egipto
3 RODRIGUEZ-PEREZ, JOSE RAMON Hombre Universidad San Sebastián - Chile
4 Abdelrahem, Mohamed Hombre Faculty of Engineering - Egipto
Technische Universität München - Alemania
Assiut Univ - Egipto
TECH UNIV MUNICH - Alemania

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Agencia Nacional de Investigaci'y Desarrollo (ANID)
Science, Technology, and Innovation Funding Authority (STDF), Egypt, Assiut University Smart Grid Laboratory
Project ''PV Stand Alone System for Green Hydrogen Generation and Storage for a HouseHybrid Loads''

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported in part by the Project ''PV Stand Alone System for Green Hydrogen Generation and Storage for a HouseHybrid Loads'' under Grant 46069; and in part by the Science, Technology, and Innovation Funding Authority (STDF), Egypt, Assiut University Smart Grid Laboratory. The work of Jose Rodriguez was supported by the Agencia Nacional de Investigaci'y Desarrollo (ANID) via under Project FB0008, Project 1210208, and Project 1221293.

Muestra la fuente de financiamiento declarada en la publicación.