Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.14232/EJQTDE.2018.1.16 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper we study a new class of functions, which we call (omega, c)-periodic functions. This collection includes periodic, anti-periodic, Bloch and unbounded functions. We prove that the set conformed by these functions is a Banach space with a suitable norm. Furthermore, we show several properties of this class of functions as the convolution invariance. We present some examples and a composition result. As an application, we establish some sufficient conditions for the existence and uniqueness of (omega, c)-periodic mild solutions to a fractional evolution equation.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Alvarez, Edgardo | Hombre |
Univ Norte - Colombia
Universidad del Norte - Colombia |
| 2 | Gomez, Adrian | Hombre |
Universidad del Bío Bío - Chile
|
| 3 | PINTO-CONTRERAS, MANUEL ENRIQUE | Hombre |
Universidad de Chile - Chile
|
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica |
| Fondo Nacional de Desarrollo CientÃfico, Tecnológico y de Innovación Tecnológica |
| Direccion de Desarrollo Academico de Universidad del Norte |
| Direccion de Investigaciones |
| Agradecimiento |
|---|
| E. Alvarez was partially supported by Direccion de Investigaciones, Project 2016-011, and by Direccion de Desarrollo Academico de Universidad del Norte; A. Gomez was partially supported by FONDECYT grant number 11130367 and M. Pinto was partially supported by FONDECYT grant number 1170466. |
| E. Alvarez was partially supported by Dirección de Investigaciones, Project 2016-011, and by Dirección de Desarrollo Académico de Universidad del Norte; A. Gómez was partially supported by FONDECYT grant number 11130367 and M. Pinto was partially supported by FONDECYT grant number 1170466. |