Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1051/0004-6361/202348530 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Galaxies undergo numerous transformative processes throughout their lifetimes that ultimately lead to the expulsion of gas and the cessation of star-forming activity. This phenomenon is commonly known as quenching, and in this study, we delve into the possibility that this process is caused by the environmental processes associated with the surrounding cluster. To this end, we used the results of our previous paper - where we analyzed dwarf galaxies in the SAMI-Fornax survey together with massive galaxies from the ATLAS(3D) survey - to compute the quenching time of each galaxy and compare it with the infall time into the cluster. Using t(90) as an approximation of the quenching time and deriving the infall time from phase-space models, we determined the probability of the quenching being produced by the local environment of galaxies. Our results reveal a relation between galaxy mass and quenching probability. Massive galaxies, down to M-star similar to 10(10)M(circle dot), exhibit a low, almost zero probability of quenching, suggesting their independence of environmental effects. As we move into the mass regime of dwarf galaxies, the probability increases with decreasing mass, highlighting their sensitivity to environmental quenching. For dwarfs, 36 +/- 9% of our observational data are consistent with this hypothesis, challenging the idea that the present-day cluster, Fornax, is the primary driver of quenching in the low-mass galaxies of our sample with stellar mass from 10(7) to 10(9)M(circle dot). To further investigate the importance of environmental processes, we compared these results with cosmological simulations, selecting galaxies under similar conditions to our observational sample. Remarkably, the simulated sample shows lower quenching probabilities as we move down in mass, and barely 5 +/- 1% of galaxies meet the quenching criteria. This discrepancy between observations and simulations underlines the fact that the modelling of quenching is still in its infancy. In general, the number of observed galaxies quenched by their environment is lower than expected, which suggests that preprocessing plays a larger role in galaxy evolution. Ultimately, our results highlight the need for higher-quality simulations and refinement of galaxy formation and evolution models.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Romero-Gomez, J. | - |
Inst Astrofis Canarias - España
UNIV LA LAGUNA - España Instituto Astrofisico de Canarias - España Universidad de La Laguna - España |
| 2 | Peletier, R. E. | Hombre |
Univ Groningen - Países Bajos
Kapteyn Instituut - Países Bajos |
| 3 | LOPEZ-AGUERRI, JOSE ALFONSO | Hombre |
Inst Astrofis Canarias - España
UNIV LA LAGUNA - España Instituto Astrofisico de Canarias - España Universidad de La Laguna - España |
| 4 | Smith, R. | - |
Universidad Técnica Federico Santa María - Chile
|
| Fuente |
|---|
| Ministerio de Educación, Cultura y Deporte |
| Ministerio de Ciencia, Innovacion y Universidades |
| Spanish Ministry of Education, Culture and Sports |
| Spanish Ministerio de Ciencia e Innovacin y Universidades |
| Ignacio Martín Navarro and Katja Fahrion |
| Agradecimiento |
|---|
| JRG and JALA are supported by the Spanish Ministry of Education, Culture and Sports under grant AYA2017-83204-P and by the Spanish Ministerio de Ciencia e Innovacion y Universidades by the grant PID2020-119342GB-I00. We would like to thank Ignacio Martin Navarro and Katja Fahrion for kindly giving us their SFHs of the Fornax3D galaxies. For the analysis, we have used Python http://www.python.org; Matplotlib (Hunter 2007), a suite of open source python modules that provide a framework for creating scientific plots; and Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration 2013). |
| JRG and JALA are supported by the Spanish Ministry of Education, Culture and Sports under grant AYA2017-83204-P and by the Spanish Ministerio de Ciencia e Innovaci\u00F3n y Universidades by the grant PID2020-119342GB-I00. We would like to thank Ignacio Mart\u00EDn Navarro and Katja Fahrion for kindly giving us their SFHs of the Fornax3D galaxies. For the analysis, we have used Python http://www.python.org; Matplotlib (Hunter 2007), a suite of open source python modules that provide a framework for creating scientific plots; and Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration 2013). |