Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/APP14177675 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper presents the topic review (TR), a novel semi-automatic framework designed to enhance the efficiency and accuracy of literature reviews. By leveraging the capabilities of large language models (LLMs), TR addresses the inefficiencies and error-proneness of traditional review methods, especially in rapidly evolving fields. The framework significantly improves literature review processes by integrating advanced text mining and machine learning techniques. Through a case study approach, TR offers a step-by-step methodology that begins with query generation and refinement, followed by semi-automated text mining to identify relevant articles. LLMs are then employed to extract and categorize key themes and concepts, facilitating an in-depth literature analysis. This approach demonstrates the transformative potential of natural language processing in literature reviews. With an average similarity of 69.56% between generated and indexed keywords, TR effectively manages the growing volume of scientific publications, providing researchers with robust strategies for complex text synthesis and advancing knowledge in various domains. An expert analysis highlights a positive Fleiss' Kappa score, underscoring the significance and interpretability of the results.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Gana, Bady | - |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 2 | Leiva-Araos, Andres | Hombre |
Universidad del Desarrollo - Chile
|
| 3 | ALLENDE-CID, HECTOR GABRIEL | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
Fraunhofer Inst Intelligente Anal & Informat Syst - Alemania Lamarr Inst Machine Learning & Artificial Intellig - Alemania Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS - Alemania Lamarr Institute for Machine Learning and Artificial Intelligence - Alemania |
| 4 | GARCIA-CONEJEROS, JOSE ANTONIO | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| Fuente |
|---|
| Agencia Nacional de Investigación y Desarrollo |
| National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO |
| Agenția Națională pentru Cercetare și Dezvoltare |
| Beca INF-PUCV |
| VINCI-DI |
| Agradecimiento |
|---|
| Bady Gana is funded by National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL/2024-21240115. Bady Gana is funded by Beca INF-PUCV. Jose Garcia is funded by VINCI-DI:039.463/2024. |
| Bady Gana is supported by National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL/2024-21240115. Bady Gana is supported by Beca INF-PUCV. Jos\u00E9 Garc\u00EDa is supported by VINCI-DI:039.463/2024. |