Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Virtual tissue microstructure reconstruction across species using generative deep learning
Indexado
WoS WOS:001267555600065
Scopus SCOPUS_ID:85198610793
DOI 10.1371/JOURNAL.PONE.0306073
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Analyzing tissue microstructure is essential for understanding complex biological systems in different species. Tissue functions largely depend on their intrinsic tissue architecture. Therefore, studying the three-dimensional (3D) microstructure of tissues, such as the liver, is particularly fascinating due to its conserved essential roles in metabolic processes and detoxification. Here, we present TiMiGNet, a novel deep learning approach for virtual 3D tissue microstructure reconstruction using Generative Adversarial Networks and fluorescence microscopy. TiMiGNet overcomes challenges such as poor antibody penetration and time-intensive procedures by generating accurate, high-resolution predictions of tissue components across large volumes without the need of paired images as input. We applied TiMiGNet to analyze tissue microstructure in mouse and human liver tissue. TiMiGNet shows high performance in predicting structures like bile canaliculi, sinusoids, and Kupffer cell shapes from actin meshwork images. Remarkably, using TiMiGNet we were able to computationally reconstruct tissue structures that cannot be directly imaged due experimental limitations in deep dense tissues, a significant advancement in deep tissue imaging. Our open-source virtual prediction tool facilitates accessible and efficient multi-species tissue microstructure analysis, accommodating researchers with varying expertise levels. Overall, our method represents a powerful approach for studying tissue microstructure, with far-reaching applications in diverse biological contexts and species.

Revista



Revista ISSN
P Lo S One 1932-6203

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Biology
Multidisciplinary Sciences
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Bettancourt, Nicolas - Universidad de Concepción - Chile
2 Perez-Gallardo, Cristian - Universidad de Concepción - Chile
3 CANDIA-CAMPANO, VALERIA Mujer Universidad de Concepción - Chile
4 GUEVARA-ALVEZ, PAMELA BEATRIZ Mujer Universidad de Concepción - Chile
5 Kalaidzidis, Yannis - Max Planck Inst Mol Cell Biol & Genet - Alemania
Max Planck Institute of Molecular Cell Biology and Genetics - Alemania
6 Zerial, Marino - Max Planck Inst Mol Cell Biol & Genet - Alemania
Max Planck Institute of Molecular Cell Biology and Genetics - Alemania
7 Segovia-Miranda, F. Hombre Universidad de Concepción - Chile
8 Morales-Navarrete, Hernan - Univ Konstanz - Alemania
Univ Int Ecuador UIDE - Ecuador
Universität Konstanz - Alemania
Universidad Internacional del Ecuador - Ecuador

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
VRID-UdeC
Fondo Nacional de Desarrollo Científico y Tecnológico
ANID Fondecyt
Fondo Nacional de Desarrollo Cientifico y Tecnologico, ANID Fondecyt regular
ANID-Basal Center

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was financially supported by Fondo Nacional de Desarrollo Cientifico y Tecnologico, ANID Fondecyt regular 1200965 to FS-M, VRID-UdeC 2024001079INV to FS-M, and ANID-Basal Center FB210017 (CENIA) to PG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Funding: This work was financially supported by Fondo Nacional de Desarrollo Cient\u00EDfico y Tecnol\u00F3gico, ANID Fondecyt regular 1200965 to FS-M, VRID-UdeC 2024001079INV to FS-M, and ANID-Basal Center FB210017 (CENIA) to PG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Muestra la fuente de financiamiento declarada en la publicación.