Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1137/23M1579042 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This article presents a numerical scheme for the variational model formulated by Calderer et al. [J. Elast., 141 (2020), pp. 51--73] for the debonding of a hydrogel film from a rigid substrate upon exposure to solvent, in the two-dimensional case of a film placed between two parallel walls. It builds upon the scheme introduced by Song et al. [J. Elast., 153 (2023), pp. 651--679] for completely bonded gels, which fails to be robust in the case of gels that are already debonded. The new scheme is used to compute the energy release rate function, based on which predictions are offered for the threshold thickness below which the gel/substrate system is stable against debonding. This study, in turn, makes it possible to validate a theoretical estimate for the energy release rate obtained in the cited works, which is based on a thin-film asymptotic analysis and which, due to its explicit nature, is potentially valuable in medical device development. An existence theorem and rigorous justifications of some approximations made in our numerical scheme are also provided.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Calderer, Maria carme | - |
Univ Minnesota - Estados Unidos
University of Minnesota Twin Cities - Estados Unidos |
| 2 | HENAO-MANRIQUE, DUVAN ALBERTO | - |
Universidad de O`Higgins - Chile
Centro de Modelamiento Matemático - Chile Universidad de O’Higgins - Chile |
| 3 | Sanchez, Manuel a. | - |
Pontificia Universidad Católica de Chile - Chile
|
| 4 | Siegel, Ronald a. | - |
Univ Minnesota - Estados Unidos
University of Minnesota Twin Cities - Estados Unidos |
| 5 | Song, Sichen | - |
Univ Minnesota - Estados Unidos
University of Minnesota Twin Cities - Estados Unidos |
| Fuente |
|---|
| National Science Foundation |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondecyt Regular |
| Fondecyt Project |
| Centro Nacional de Inteligencia Artificial CENIA |
| Centro Nacional de Inteligencia Artificial CENIA, Basal ANID Chile |
| Centro de Modelamiento Matemático, Facultad de Ciencias Físicas y Matemáticas |
| Center for Mathematical Modeling through ANID/Basal project |
| Agradecimiento |
|---|
| The first and fifth author were funded by National Science Foundation grant DMS-1616866. The third author was supported by FONDECYT Regular grant N. 1221189 and by Centro Nacional de Inteligencia Artificial CENIA, FB210017, Basal ANID Chile. The second author received funding from FONDECYT project 1231401 and from the Center for Mathematical Modeling through ANID/Basal project FB210005. |
| \\ast Received by the editors June 13, 2023; accepted for publication (in revised form) April 22, 2024; published electronically August 13, 2024. https://doi.org/10.1137/23M1579042 Funding: The first and fifth author were funded by National Science Foundation grant DMS-1616866. The third author was supported by FONDECYT Regular grant N. 1221189 and by Centro Nacional de Inteligencia Artificial CENIA, FB210017, Basal ANID Chile. The second author received funding from FONDECYT project 1231401 and from the Center for Mathematical Modeling through ANID/Basal project FB210005. \\dagger School of Mathematics, University of Minnesota, Minneapolis, MN 55455 USA (calde014@umn. edu, song0357@umn.edu). \\ddagger Instituto de Ciencias de la Ingenier\\{\\'i}a, Universidad de O'Higgins, Rancagua, Chile, and Center for Mathematical Modeling (duvan.henao@uoh.cl). \\S Instituto de Ingenier\\{\\'i}a Matem\\a'tica y Computacional, Pontificia Universidad Cat\\o'lica de Chile, Santiago, Chile (manuel.sanchez@ing.puc.cl). \\P Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455 USA (siege017@ umn.edu). |