Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1109/ROMOCO60539.2024.10604418 | ||||
| Año | 2024 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this work we present a strategy to solve the task optimization problem for dual-arm mobile manipulators in the context of agricultural tasks. The strategy combines a Reinforcement Learning (RL) agent with a low-level Operational Space Controller (OSC). The agent is responsible for motion planning, as well as compensatory torque computation. Preliminary results obtained through physically accurate simulation using MuJoCo show that the method proposed achieves a higher task success rate in task completion.
| Revista | ISSN |
|---|---|
| 2019 12 Th International Workshop On Robot Motion And Control (Romoco '19) | 2575-5579 |
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Galarce-Acevedo, Patricio | - |
Universidad Tecnológica Metropolitana - Chile
|
| 2 | Torres-Torriti, Miguel | - |
Pontificia Universidad Católica de Chile - Chile
|
| 3 | IEEE | Corporación |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Basal Project |
| Agencia Nacional de Investigación y Desarrollo |
| National Agency of Research and Development |
| National Agency of Research and Development (ANID) |
| Agradecimiento |
|---|
| This project has been supported by the National Agency of Research and Development (ANID) under grants Fondecyt 1220140 and Basal Project FB0008. |
| This project has been supported by the National Agency of Research and Development (ANID) under grants Fondecyt 1220140 and Basal Project FB0008. |