Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Biomass flame spectroscopy technique to identify wood species through spectral emission during combustion processes
Indexado
WoS WOS:001317143800001
Scopus SCOPUS_ID:85202514053
DOI 10.1016/J.MEASUREMENT.2024.115581
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The energy emitted by a flame and its spectra provide critical information about fuels, such as energy type, temperature, and molecular properties. While traditionally used to analyze combustion, we introduce a spectral-time-based index, optical calorific power (OCP), to calculate the total energy released per mass unit (J/Kg), relating to the calorific value of wood-based fuels. Using novel optical variables and machine learning, we identified different wood species during the combustion of the wood samples. Homogeneous samples of four wood species (sapwood and heartwood) were ignited in a temperature-controlled furnace. Spectra were measured using a calibrated spectrophotometer in the 450-900 nm range with a 100ms integration time. Continuous and discontinuous spectral patterns were observed in all samples, used to calculate spectral-time-based optical variables, and separated using the AirPLS algorithm. Discontinuous spectra correlated with Na and K emissions (589.4 nm and 766.5 nm, respectively). Continuous spectra were analyzed to determine optical variables such as flame temperature (K), total continuous radiation (TCR, mu W/cm(2)), and total continuous energy (TCE, mu J). Five supervised classification models, XGBoost, LR, SVM, LDA, and RF, were trained using normalized physical parameters and optical variables with stratified cross-validation. The proposed optical variables yielded an identification accuracy of 93%, precision of 95%, and recall of 93% during combustion using the XGBoost method. These promising results demonstrate the potential of our method for accurately identifying wood species, while offering a cost-effective and novel alternative to NIR-SWIR reflectance spectral identification techniques.

Revista



Revista ISSN
Measurement 0263-2241

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Multidisciplinary
Instruments & Instrumentation
Scopus
Electrical And Electronic Engineering
Instrumentation
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Castillo, Fernando Hombre Dept Elect Engn - Chile
2 Arias, Luis - Dept Elect Engn - Chile
3 Cifuentes, Jose Hombre Dept Elect Engn - Chile
Ctr Ocean Technol & Instrumentat - Chile
Center for Ocean Technology and Instrumentation - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Agencia Nacional de Investigación y Desarrollo
ANID scholarship
ANID through FONDECYT Project

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors acknowledge the funding provided by ANID through Fondecyt project Nr. 1211184 and ANID Scholarship Nr. 21212151.
The authors acknowledge the funding provided by ANID through Fondecyt project Nr. 1211184 and ANID Scholarship Nr. 21212151 .

Muestra la fuente de financiamiento declarada en la publicación.