Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1002/ADOM.202401475 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The ligand passivation is considered an attractive strategy to prepare high-quality perovskite nanocrystals (PNCs) with improved photophysical features in polar media. However, the long-term stabilization of PNCs in these environments is still challenging, being pivotal to understanding the protection mechanism given by prominent surface ligands and avoiding material deterioration in polar solvents. In this work, how the nature of diverse alkylammonium bromides used during surface passivation influences the photophysical properties and quality of CsPbX3 PNCs fully dispersed in alcohol environments, exhibiting stability up to 10 months are investigated. By adding didodecyldimethylammonium benzyldodecyldimethylammonium and tetrabutylammonium bromides (DDAB, BDAB, and TBAB, respectively), DDAB and BDAB promote a suitable and partial surface coverage are observed, respectively, suppressing defect sites in the nanocrystals. Conversely, TBAB shows poor surface protection, decreasing the PL features of PNCs. The presence of DDAB and BDAB favors the fabrication of color converters, and efficient light-emitting diodes (LEDs) with external quantum efficiencies (EQE) of approximate to 23%. Interestingly, significant device stability with BDAB capping shows an LED half-life of 20-fold longer than for DDAB. This contribution offers a promising approach for preparing highly luminescent and stable alcohol-dispersed PNCs, useful for fabricating efficient optoelectronic devices.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Uribe-Vegas, Pablo | - |
Universidad Austral de Chile - Chile
|
| 2 | Villanueva-Antolí, Alexis | Hombre |
Univ Jaume I UJI - España
Universidad Jaume I - España |
| 3 | Segura, Camilo | Hombre |
Universidad Austral de Chile - Chile
Universidad de Chile - Chile |
| 4 | Werlinger, Francisca | - |
Universidad Austral de Chile - Chile
Universidad de Chile - Chile |
| 5 | Aliaga, Karen R. | - |
Universidad de Chile - Chile
|
| 6 | Caprile, Renato | - |
Universidad de Chile - Chile
|
| 7 | Trofymchuk, Oleksandra S. | Mujer |
Universidad de Chile - Chile
|
| 8 | Flores, Mario E. | - |
Universidad Austral de Chile - Chile
|
| 9 | Osorio-Roman, Igor O. | Hombre |
Universidad Austral de Chile - Chile
|
| 10 | Echeverria-Arrondo, Carlos | - |
Univ Jaume I UJI - España
Universidad Jaume I - España |
| 11 | Das Adhikari, Samrat | - |
Univ Jaume I UJI - España
Universidad Jaume I - España |
| 12 | Selmi, Olfa | - |
Univ Jaume I UJI - España
Universidad Jaume I - España |
| 13 | Mora-Sero, Ivan | Hombre |
Univ Jaume I UJI - España
Universidad Jaume I - España |
| 14 | Rodriguez-Pereira, Jhonatan | - |
Univ Pardubice - República Checa
Brno Univ Technol - República Checa Univerzita Pardubice - República Checa Brno University of Technology - República Checa |
| 15 | Pradhan, Bapi | - |
Katholieke Univ Leuven - Bélgica
KU Leuven - Bélgica |
| 16 | Paulus, Michael | - |
Tech Univ Dortmund - Alemania
Technische Universität Dortmund - Alemania |
| 17 | Sternemann, Christian | - |
Tech Univ Dortmund - Alemania
Technische Universität Dortmund - Alemania |
| 18 | Hofkens, Johan | - |
Katholieke Univ Leuven - Bélgica
KU Leuven - Bélgica |
| 19 | MARTINEZ-RODRIGUEZ, JAVIER | Hombre |
Universidad Austral de Chile - Chile
|
| 20 | Masi, Sofia | - |
Univ Jaume I UJI - España
Universidad Jaume I - España |
| 21 | Gualdron-Reyes, Andres F. | Hombre |
Universidad Austral de Chile - Chile
Univ Jaume I UJI - España Universidad Jaume I - España |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Ministerio de Ciencia e Innovación |
| Ministry of Science and Innovation of Spain |
| Generalitat Valenciana |
| Generalitat Valenciana (Spain) |
| FONDECYT Iniciacion project |
| MICINN (Spain) |
| Fondecyt Iniciacion fellowship |
| Fondecyt postdoctorado fellowship |
| Agencia Nacional de Investigación y Desarrollo |
| Generalitat Valenciana via Prometeo Grant Q-Solutions |
| FONDECYT Regular fellowship |
| Generalitat Valenciana under a Grisolia pre-doctoral |
| Ministerio de Ciencia e Innovacion - AEI |
| Agradecimiento |
|---|
| This project has been partially supported by the Generalitat Valenciana via Prometeo Grant Q-Solutions (CIPROM/2021/078) and by the Ministerio de Ciencia e Innovacion via the project PID2022-140090OB-C21/AEI/10.13039/501100011033/FEDER, EU.''. A.F.G.-R. thanks to ANID for the financial support through the FONDECYT Iniciacion Project (Grant no. 11240161). C.S. is grateful for the FONDECYT Postdoctorado fellowship (Grant no. 3220178). F.W. is grateful for the FONDECYT Postdoctorado fellowship 3220023. J.M. thanks to the FONDECYT Iniciacion fellowship (Grant no. 11230124). O. S. T. is grateful for the FONDECYT Regular fellowship 1220241. This work was supported by the Ministry of Science and Innovation of Spain under Projects She-LED (PID2021-122960OA-I00) and Step-Up (TED2021-131600B-C31). S.M. acknowledges financial support from MICINN (Spain) through the program Juan de la Cierva-Incorporacion IJC2020-042618-I. O.S. acknowledges funding from the Generalitat Valenciana under a Grisolia pre-doctoral contract reference CIGRIS/2022/122. The authors acknowledge financial support from Generalitat Valenciana (Spain) under Project PRINT-P MFA/2022/020. The authors are very grateful to Vladimir S. Chivrony for his analysis of PL lifetime measurements. The authors thank the Unidad de Microscopia Electronica (UME) of the Universidad Austral de Chile for the TEM and SEM measurements and Cinthia Quiroga and CEPEDEQ for the usage of NMR facility. The authors would also like to thank the DELTA for providing synchrotron radiation at beamlines BL2 and BL9. |
| This project has been partially supported by the Generalitat Valenciana via Prometeo Grant Q\u2010Solutions (CIPROM/2021/078) and by the Ministerio de Ciencia e Innovaci\u00F3n via the project PID2022\u2010140090OB\u2010C21/AEI/10.13039/501100011033/FEDER, EU.\u2033. A.F.G.\u2010R. thanks to ANID for the financial support through the FONDECYT Iniciaci\u00F3n Project (Grant no. 11240161). C.S. is grateful for the FONDECYT Postdoctorado fellowship (Grant no. 3220178). F.W. is grateful for the FONDECYT Postdoctorado fellowship 3220023. J.M. thanks to the FONDECYT Iniciaci\u00F3n fellowship (Grant no. 11230124). O. S. T. is grateful for the FONDECYT Regular fellowship 1220241. This work was supported by the Ministry of Science and Innovation of Spain under Projects She\u2010LED (PID2021\u2010122960OA\u2010I00) and Step\u2010Up (TED2021\u2010131600B\u2013C31). S.M. acknowledges financial support from MICINN (Spain) through the program Juan de la Cierva\u2010Incorporaci\u00F3n IJC2020\u2010042618\u2010I. O.S. acknowledges funding from the Generalitat Valenciana under a Grisolia pre\u2010doctoral contract reference CIGRIS/2022/122. The authors acknowledge financial support from Generalitat Valenciana (Spain) under Project PRINT\u2010P MFA/2022/020. The authors are very grateful to Vladimir S. Chivrony for his analysis of PL lifetime measurements. The authors thank the Unidad de Microscopia Electr\u00F3nica (UME) of the Universidad Austral de Chile for the TEM and SEM measurements and Cinthia Quiroga and CEPEDEQ for the usage of NMR facility. The authors would also like to thank the DELTA for providing synchrotron radiation at beamlines BL2 and BL9. |