Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A Review on Large-Scale Data Processing with Parallel and Distributed Randomized Extreme Learning Machine Neural Networks
Indexado
WoS WOS:001256564700001
Scopus SCOPUS_ID:85196774925
DOI 10.3390/MCA29030040
Año 2024
Tipo revisión

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The randomization-based feedforward neural network has raised great interest in the scientific community due to its simplicity, training speed, and accuracy comparable to traditional learning algorithms. The basic algorithm consists of randomly determining the weights and biases of the hidden layer and analytically calculating the weights of the output layer by solving a linear overdetermined system using the Moore-Penrose generalized inverse. When processing large volumes of data, randomization-based feedforward neural network models consume large amounts of memory and drastically increase training time. To efficiently solve the above problems, parallel and distributed models have recently been proposed. Previous reviews of randomization-based feedforward neural network models have mainly focused on categorizing and describing the evolution of the algorithms presented in the literature. The main contribution of this paper is to approach the topic from the perspective of the handling of large volumes of data. In this sense, we present a current and extensive review of the parallel and distributed models of randomized feedforward neural networks, focusing on extreme learning machine. In particular, we review the mathematical foundations (Moore-Penrose generalized inverse and solution of linear systems using parallel and distributed methods) and hardware and software technologies considered in current implementations.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematics, Interdisciplinary Applications
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Gelvez-Almeida, Elkin - Universidad Católica del Maule - Chile
UNIV SIMON BOLIVAR - Colombia
Universidad Simón Bolivar, Cúcuta - Colombia
2 MORA-COFRE, MARCO ANTONIO Hombre Universidad Católica del Maule - Chile
3 Barrientos, Ricardo J. Hombre Universidad Católica del Maule - Chile
4 Hernandez-Garcia, Ruber - Universidad Católica del Maule - Chile
5 Vilches-Ponce, Karina Mujer Universidad Católica del Maule - Chile
6 Vera, Miguel Hombre UNIV SIMON BOLIVAR - Colombia
Universidad Simón Bolivar, Cúcuta - Colombia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
ANID Fondecyt
Agencia Nacional de Investigación y Desarrollo
National Agency for Research and Development (ANID)/Scholarship Program/BECAS DOCTORADO NACIONAL
Agenția Națională pentru Cercetare și Dezvoltare
Research Project ANID FONDECYT INICIACIN, Government of Chile
Research Project ANID FONDECYT REGULAR, Government of Chile

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was funded by the National Agency for Research and Development (ANID)/Scholarship Program/BECAS DOCTORADO NACIONAL/2020-21201000. The authors of the paper also thank the Research Project ANID FONDECYT REGULAR 2020 No. 1200810 "Very Large Fingerprint Classification Based on a Fast and Distributed Extreme Learning Machine," Government of Chile. R.H.-G. also thanks to the Research Project ANID FONDECYT INICIACI & Oacute;N 2022 No. 11220693"End-to-end multi-task learning framework for individuals identification through palm vein patterns", Government of Chile.
This work was funded by the National Agency for Research and Development (ANID)/Scholarship Program/BECAS DOCTORADO NACIONAL/2020\u201421201000. The authors of the paper also thank the Research Project ANID FONDECYT REGULAR 2020 No. 1200810 \u201CVery Large Fingerprint Classification Based on a Fast and Distributed Extreme Learning Machine,\u201D Government of Chile. R.H.-G. also thanks to the Research Project ANID FONDECYT INICIACI\u00D3N 2022 No. 11220693 \u201CEnd-to-end multi-task learning framework for individuals identification through palm vein patterns\u201D, Government of Chile.

Muestra la fuente de financiamiento declarada en la publicación.