Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/APP14114602 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper explores the application of Deep Reinforcement Learning (DRL) and Sim2Real strategies to enhance the autonomy of beach-cleaning robots. Experiments demonstrate that DRL agents, initially refined in simulations, effectively transfer their navigation skills to real-world scenarios, achieving precise and efficient operation in complex natural environments. This method provides a scalable and effective solution for beach conservation, establishing a significant precedent for the use of autonomous robots in environmental management. The key advancements include the ability of robots to adhere to predefined routes and dynamically avoid obstacles. Additionally, a newly developed platform validates the Sim2Real strategy, proving its capability to bridge the gap between simulated training and practical application, thus offering a robust methodology for addressing real-life environmental challenges.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Quiroga, Francisco | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 2 | HERMOSILLA-VIGNEAU, GABRIEL | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 3 | VARAS-SIRINAY, GERMAN ENRIQUE | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 4 | Alonso, Francisco | - |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 5 | Schroder, Karla | - |
Pontificia Universidad Católica de Valparaíso - Chile
|