Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A Novel Collaborative SRU Network With Dynamic Behaviour Aggregation, Reduced Communication Overhead and Explainable Features
Indexado
WoS WOS:001242344200036
Scopus SCOPUS_ID:85182355517
DOI 10.1109/JBHI.2024.3352013
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Leakage and tampering problems in collection and transmission of biomedical data have attracted much attention as these concerns instigates negative impression regarding privacy, security, and reputation of medical networks. This article presents a novel security model that establishes a threat-vector database based on the dynamic behaviours of smart healthcare systems. Then, an improved and privacy-preserved SRU network is designed that aims to alleviate fading gradient issue and enhance the learning process by reducing computational cost. Then, an intelligent federated learning algorithm is deployed to enable multiple healthcare networks to form a collaborative security model in a personalized manner without the loss of privacy. The proposed security method is both parallelizable and computationally effective since the dynamic behaviour aggregation strategy empowers the model to work collaboratively and reduce communication overhead by dynamically adjusting the number of participating clients. Additionally, the visualization of the decision process based on the explainability of features enhances the understanding of security experts by enabling them to comprehend the underlying data evidence and causal reasoning. Compared to existing methods, the proposed security method is capable of thoroughly analyzing and detecting severe security threats with high accuracy, reduce overhead and lower computation cost along with enhanced privacy of biomedical data.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Interdisciplinary Applications
Computer Science, Information Systems
Mathematical & Computational Biology
Medical Informatics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Khan, Izhar Ahmed - Nanjing Univ Aeronaut & Astronaut - China
Nanjing University of Aeronautics and Astronautics - China
2 Razzak, Imran - Univ New South Wales - Australia
UNSW Sydney - Australia
3 Pi, Dechang - Nanjing Univ Aeronaut & Astronaut - China
Nanjing University of Aeronautics and Astronautics - China
4 Zia, Umar - Comsats Univ Islamabad - Pakistán
COMSATS University Islamabad, Attock Campus - Pakistán
5 Kamal, Shaharyar - Universidad de Chile - Chile
6 Hussain, Yasir - Nanjing Univ Aeronaut & Astronaut - China
Nanjing University of Aeronautics and Astronautics - China

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Science and Technology Innovation 2030-Key Project

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
No Statement Available

Muestra la fuente de financiamiento declarada en la publicación.