Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Understanding requirements, limitations and applicability of QSAR and PTF models for predicting sorption of pollutants on soils: a systematic review
Indexado
WoS WOS:001298898400001
Scopus SCOPUS_ID:85202063797
DOI 10.3389/FENVS.2024.1379283
Año 2024
Tipo revisión

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Sorption is a key process to understand the environmental fate of pollutants on soils, conduct preliminary risk assessments and fill information gaps. Quantitative Structure-Activity Relationships (QSAR) and Pedotransfer Functions (PTF) are the most common approaches used in the literature to predict sorption. Both models use different outcomes and follow different simplification strategies to represent data. However, the impact of those differences on the interpretation of sorption trends and application of models for regulatory purposes is not well understood. We conducted a systematic review to contextualize the requirements for developing, interpreting, and applying predictive models in different scenarios of environmental concern by using pesticides as a globally relevant organic pollutant model. We found disagreements between predictive model assumptions and empirical information from the literature that affect their reliability and suitability. Additionally, we found that both model procedures are complementary and can improve each other by combining the data treatment and statistical validation applied in PTF and QSAR models, respectively. Our results expose how relevant the methodological and environmental conditions and the sources of variability studied experimentally are to connect the representational value of data with the applicability domain of predictive models for scientific and regulatory decisions. We propose a set of empirical correlations to unify the sorption mechanisms within the dataset with the selection of a proper kind of model, solving apparent incompatibilities between both models, and between model assumptions and empirical knowledge. The application of our proposal should improve the representativity and quality of predictive models by adding explicit conditions and requirements for data treatment, selection of outcomes and predictor variables (molecular descriptors versus soil properties, or both), and an expanded applicability domain for pollutant-soil interactions in specific environmental conditions, helping the decision-making process in regard to both scientific and regulatory concerns (in the following, the scientific and regulatory dimensions).

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Environmental Sciences
Scopus
Environmental Science (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Neira-Albornoz, Angelo - Univ Konstanz - Alemania
Universität Konstanz - Alemania
2 Martinez-Parga-Mendez, Madigan - Universidad de Chile - Chile
Independent Researcher - Alemania
3 Gonzalez, Mitza - Universidad de Chile - Chile
4 Spitz, Andreas - Univ Konstanz - Alemania
Universität Konstanz - Alemania

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universitt Konstanz10.13039/501100010583
Zukunftskolleg, Universität Konstanz

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
No Statement Available
The author(s) declare financial support was received for the research, authorship, and/or publication of this article. AN-A was funded by a ZUKOnnect Fellowship of the Zukunftskolleg, University of Konstanz.

Muestra la fuente de financiamiento declarada en la publicación.