Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



PERMUTATION OF PERIODIC POINTS OF VEECH SURFACES IN H (2)
Indexado
WoS WOS:001266159200001
Scopus SCOPUS_ID:85199770444
DOI 10.3934/JMD.2024010
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



We study how Weierstrass points of Veech surfaces in H (2), the stratum of Abelian differentials on Riemann surfaces in genus two with a single zero of order two, are permuted. These surfaces were classified by McMullen relying on two invariants: discriminant and spin. More precisely, given a Veech surface in H (2) of discriminant D, we show that the permutation group induced by the affine group on the set of Weierstrass points is isomorphic to Dih4, if D equivalent to 4 0; to Dih5, if D equivalent to 8 5; and to Dih6, if D equivalent to 8 1. Moreover, these same groups arise when considering only Dehn multitwists of the affine group.

Revista



Revista ISSN
Journal Of Modern Dynamics 1930-5311

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematics
Mathematics, Applied
Scopus
Algebra And Number Theory
Applied Mathematics
Analysis
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Gutierrez-Romo, Rodolfo Hombre Universidad de Chile - Chile
2 Pardo, Angel Hombre Universidad de Santiago de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
FONDE-CYT
Math-Amsud
Center for Mathematical Modeling (CMM)
ANID-Chile
BASAL funds for centers of excellence from ANID-Chile

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported by the Center for Mathematical Modeling (CMM), ACE210010 and FB210005, BASAL funds for centers of excellence from ANID-Chile, and the MATH-AmSud 21-MATH-07 grant. The first named author was also supported by ANID-Chile through the FONDECYT Iniciacion 11190034 grant, while the second named author was also supported by ANID-Chile through the FONDECYT Regular 1221934 grant.
Received April 20, 2023; revised April 5, 2024. 2020 Mathematics Subject Classification: Primary: 14H55; Secondary: 37C85, 37D40. Key words and phrases: Veech group, translation surface, Veech surface, lattice surface, Weier-strass point, periodic point, permutation groups, dihedral groups. This work was supported by the Center for Mathematical Modeling (CMM), ACE210010 and FB210005, BASAL funds for centers of excellence from ANID-Chile, and the MATH-AmSud 21-MATH-07 grant. The first named author was also supported by ANID-Chile through the FONDE-CYT Iniciaci\u00F3n 11190034 grant, while the second named author was also supported by ANID-Chile through the FONDECYT Regular 1221934 grant.

Muestra la fuente de financiamiento declarada en la publicación.