Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Simultaneous 3D T1, T2, and fat-signal-fraction mapping with respiratory-motion correction for comprehensive liver tissue characterization at 0.55 T
Indexado
WoS WOS:001280201800001
Scopus SCOPUS_ID:85200007202
DOI 10.1002/MRM.30236
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Purpose: To develop a framework for simultaneous three-dimensional (3D) mapping of T-1, T-2, and fat signal fraction in the liver at 0.55T. Methods: The proposed sequence acquires four interleaved 3D volumes with a two-echo Dixon readout. T-1 and T-2 are encoded into each volume via preparation modules, and dictionary matching allows simultaneous estimation of T-1, T-2, and M0 for water and fat separately. 2D image navigators permit respiratory binning, and motion fields from nonrigid registration between bins are used in a non rigid respiratory-motion-corrected reconstruction, enabling 100% scan efficiency from a free-breathingacquisition.Theintegratednatureoftheframeworkensures the resulting maps are always co-registered. Results: T-1, T-2, and fat-signal-fraction measurements in phantoms correlated strongly (adjusted r(2) > 0.98) with reference measurements. Mean liver tissue parameter values in 10 healthy volunteers were 427 +/- 22, 47.7 +/- 3.3ms, and 7 +/- 2% for T-1, T-2, and fat signal fraction, giving biases of 71,-30.0 ms, and -5 percentage points, respectively, when compared to conventional methods. Conclusion: A novel sequence for comprehensive characterization of liver tissue at 0.55T was developed. The sequence provides co-registered 3D T-1, T-2, and fat-signal-fraction maps with full coverage of the liver, from a single nine-and-a-half-minute free-breathing scan. Further development is needed to achieve accurate proton-density fat fraction (PDFF) estimation in vivo.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Radiology, Nuclear Medicine & Medical Imaging
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Tripp, Donovan P. - Kings Coll London - Reino Unido
King's College London - Reino Unido
2 Kunze, Karl P. Hombre Kings Coll London - Reino Unido
Siemens Healthcare Ltd - Reino Unido
King's College London - Reino Unido
Siemens Healthcare Limited - Reino Unido
3 Crabb, Michael G. - Kings Coll London - Reino Unido
King's College London - Reino Unido
4 PRIETO-VASQUEZ, CLAUDIA DEL CARMEN Mujer Kings Coll London - Reino Unido
Pontificia Universidad Católica de Chile - Chile
Millennium Inst Intelligent Healthcare Engn - Chile
Instituto Milenio en Ingeniería e Inteligencia Artificial para la Salud - Chile
King's College London - Reino Unido
5 Neji, Radhouene - Kings Coll London - Reino Unido
King's College London - Reino Unido
6 Botnar, Reneprime M. Hombre Kings Coll London - Reino Unido
Pontificia Universidad Católica de Chile - Chile
Millennium Inst Intelligent Healthcare Engn - Chile
Instituto Milenio en Ingeniería e Inteligencia Artificial para la Salud - Chile
King's College London - Reino Unido

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
EPSRC
Wellcome EPSRC Centre for Medical Engineering
Technische Universität München
Institute for Advanced Study
Department of Health through the National Institute for Health Research (NIHR)
ANID
NIHR Oxford Biomedical Research Centre
Department of Health and Social Care
Siemens Healthineers
Basal funding for Scientific and Technological Center of Excellence
IMPACT
National Institute for Health and Care Research
Millennium Institute for Intelligent Healthcare Engineering
Technical University of Munich-Institute for Advanced Study
King's BHF Centre for Award Excellence
ANID BASAL Centre of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile. ANID-Basal
National Institute for Health Research (NIHR) MedTech
Scientific and Technological Center of Excellence, IMPACT
EPSRC Centre for Doctoral Training in Smart Medical Imaging

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors acknowledge financial support from: (1) the EPSRC Centre for Doctoral Training in Smart Medical Imaging (EP/S022104/1), (2) Siemens Healthineers, (3) EPSRC EP/L015226, EP/V044087/1, EP/P001009/1, EP/P032311/1, and EP/P007619, (4) King's BHF Centre for Award Excellence RE/18/2/34213, BHF PG/18/59/33955, and RG/20/1/34802, (5) Wellcome EPSRC Centre for Medical Engineering (NS/A000049/1), (6) Millennium Institute for Intelligent Healthcare Engineering ICN2021_004, FONDECYT 1210637 and 1210638, (7) IMPACT, ANID BASAL Centre of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile. ANID-Basal funding for Scientific and Technological Center of Excellence, IMPACT, #FB210024, (8) the Department of Health through the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award, (9) National Institute for Health Research (NIHR) MedTech Co-operative, and (10) the Technical University of Munich-Institute for Advanced Study. The views expressed are those of the authors and not necessarily those of the BHF, NHS, the NIHR or the Department of Health.
The authors acknowledge financial support from: (1) the EPSRC Centre for Doctoral Training in Smart Medical Imaging (EP/S022104/1), (2) Siemens Healthineers, (3) EPSRC EP/L015226, EP/V044087/1, EP/P001009/1, EP/P032311/1, and EP/P007619, (4) King's BHF Centre for Award Excellence RE/18/2/34213, BHF PG/18/59/33955, and RG/20/1/34802, (5) Wellcome EPSRC Centre for Medical Engineering (NS/A000049/1), (6) Millennium Institute for Intelligent Healthcare Engineering ICN2021_004, FONDECYT 1210637 and 1210638, (7) IMPACT, ANID BASAL Centre of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile. ANID\u2014Basal funding for Scientific and Technological Center of Excellence, IMPACT, #FB210024, (8) the Department of Health through the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award, (9) National Institute for Health Research (NIHR) MedTech Co\u2010operative, and (10) the Technical University of Munich\u2014Institute for Advanced Study. The views expressed are those of the authors and not necessarily those of the BHF, NHS, the NIHR or the Department of Health.

Muestra la fuente de financiamiento declarada en la publicación.