Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.CAM.2024.116090 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper we present and analyze a new mixed finite element method for the nonlinear problem given by the stationary convective Brinkman-Forchheimer equations with varying porosity. Our approach is based on the introduction of the pseudostress and the gradient of the porosity times the velocity, as further unknowns. As a consequence, we obtain a mixed variational formulation within a Banach spaces framework, with the velocity and the aforementioned tensors as the only unknowns. The pressure, the velocity gradient, the vorticity, and the shear stress can be computed afterwards via postprocessing formulae. A fixed-point strategy, along with monotone operators theory and the classical Banach theorem, are employed to prove the well-posedness of the continuous and discrete systems. Specific finite element subspaces satisfying the required discrete stability condition are defined, and optimal a priori error estimates are derived. Finally, several numerical examples illustrating the performance and flexibility of the method and confirming the theoretical rates of convergence, are reported.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Caucao, Sergio | Hombre |
Grp Invest Anal Numer & Calculo Cient GIANuC2 - Chile
Universidad Católica de la Santísima Concepción - Chile Concepción - Chile |
| 2 | GATICA-PEREZ, GABRIEL NIBALDO | Hombre |
Ctr Invest Ingn Matemat CI2MA - Chile
Universidad de Concepción - Chile Concepción - Chile |
| 3 | Ortega, Juan P. | - |
Ctr Invest Ingn Matemat CI2MA - Chile
Universidad de Concepción - Chile Concepción - Chile |
| Fuente |
|---|
| Universidad de Concepción |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad Católica de la Santísima Concepción |
| Centro de Investigación en Ingeniería Matemática |
| ANID-Chile |
| Grupo de Investigación en Análisis Numérico y Cálculo Científico |
| Centro de Modelamiento Matemático, Facultad de Ciencias Físicas y Matemáticas |
| DI-UCSC |
| Agradecimiento |
|---|
| This research was partially supported by ANID-Chile through Centro de Modelamiento Matem\u00E1tico ( FB210005 ), Anillo of Computational Mathematics for Desalination Processes ( ACT210087 ), project Fondecyt 11220393 , and BECAS/DOCTORADO NACIONAL 21201539 ; by DI-UCSC through the project FGII 04/2023 ; by Grupo de Investigaci\u00F3n en An\u00E1lisis Num\u00E9rico y C\u00E1lculo Cient\u00EDfico (GIANuC), Universidad Cat\u00F3lica de la Sant\u00EDsima Concepci\u00F3n ; and by Centro de Investigaci\u00F3n en Ingenier\u00EDa Matem\u00E1tica (CIMA), Universidad de Concepci\u00F3n . |
| This research was partially supported by ANID-Chile through Centro de Modelamiento Matem\u00E1tico ( FB210005 ), Anillo of Computational Mathematics for Desalination Processes ( ACT210087 ), project Fondecyt 11220393 , and BECAS/DOCTORADO NACIONAL 21201539 ; by DI-UCSC through the project FGII 04/2023 ; by Grupo de Investigaci\u00F3n en An\u00E1lisis Num\u00E9rico y C\u00E1lculo Cient\u00EDfico (GIANuC), Universidad Cat\u00F3lica de la Sant\u00EDsima Concepci\u00F3n ; and by Centro de Investigaci\u00F3n en Ingenier\u00EDa Matem\u00E1tica (CIMA), Universidad de Concepci\u00F3n . |