Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Data-Enabled Finite State Predictive Control for Power Converters via Adaline Neural Network
Indexado
WoS WOS:001297363500001
Scopus SCOPUS_ID:85218342833
DOI 10.1109/TIE.2024.3413837
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Finite control-set model predictive control (FCS-MPC) has been found as a promising alternative in the control of power converters and motor drives, albeit with model dependence issues. This inherent defect of the FCS-MPC controller triggered the widespread of model-free or data-driven control schemes in recent decades. This article, at hand, presents a data-enabled finite set predictive control solution subject to model dependence issues from the dynamic modeling point of view. In this regard, a dynamic-linearization data model is utilized to equivalently reformulate the governed power converter at each operation point. In pursuit of the accurate modeling of the plant, the time-varying parameters of the data model are updated online by an adaptive linear neural network, rendering a favorable influence on implementation. Additionally, an improved capacitance-less voltage balancing method is proposed to regulate the neutral point potential. Since the parameterless prediction process for both load currents and capacitor voltage relies solely on measured and historical input- output data of the plant, the destructive effect of parameter variations can be circumvented. To evaluate the correctness of the proposed solution, the comparative simulation and experimentation with the conventional method and state-of- the-art solutions are examined on a classic three-level neutral-point-clamped inverter.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Instruments & Instrumentation
Automation & Control Systems
Engineering, Electrical & Electronic
Scopus
Electrical And Electronic Engineering
Control And Systems Engineering
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Wu, Wenjie - Zhejiang Univ - China
College of Electrical Engineering, Zhejiang University - China
Zhejiang University - China
2 Qiu, Lin - Zhejiang Univ - China
College of Electrical Engineering, Zhejiang University - China
Zhejiang University - China
3 Liu, Xing - Zhejiang Univ - China
Shanghai Dianji Univ - China
College of Electrical Engineering, Zhejiang University - China
Shanghai Dianji University - China
Zhejiang University - China
4 Ma, Jien - Zhejiang Univ - China
College of Electrical Engineering, Zhejiang University - China
Zhejiang University - China
5 RODRIGUEZ-PEREZ, JOSE RAMON Hombre Univ San Sebastian Santiago - Chile
Universidad San Sebastián - Chile
6 Fang, Youtong - Zhejiang Univ - China
College of Electrical Engineering, Zhejiang University - China
Zhejiang University - China

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Natural Science Foundation of China
ANID
Agencia Nacional de Investigación y Desarrollo
State Key Laboratory of High-speed Maglev Transportation Technology
Key R & D Plan Projects in Zhejiang Province

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported in part by the Key R & D Plan Projects in Zhejiang Province under Grant 2023C01243, in part by the National Natural Science Foundation of China under Grant 52293424, and in part by the State Key Laboratory of High-speed Maglev Transportation Technology under Grant SKLM-SFCF-2023-020. The work of Jose Rodriguez was supported by the ANID through projects FB0008, 1210208, and 1221293.
This work was supported in part by the Key R & D Plan Projects in Zhejiang Province under Grant 2023C01243, in part by the National Natural Science Foundation of China under Grant 52293424, and in part by the State Key Laboratory of High-speed Maglev Transportation Technology under Grant SKLMSFCF- 2023-020. The work of Jose Rodriguez was supported by the ANID through projects FB0008, 1210208, and 1221293.

Muestra la fuente de financiamiento declarada en la publicación.