Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.CONBUILDMAT.2024.137619 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This study makes a significant contribution to the field of pervious concrete by using machine learning to innovatively predict both mechanical and hydraulic performance. Unlike existing methods that rely on laborintensive trial-and-error experiments, our proposed approach leverages a multilayer perceptron network. To develop this approach, we compiled a comprehensive dataset comprising 271 sets and 3,252 experimental data points. Our methodology involved evaluating 22,246 network configurations, employing Monte Carlo crossvalidation over 20 iterations, and using 4 training algorithms, resulting in a total of 1,779,680 training iterations. This results in an optimized model that integrates diverse mix design parameters, enabling accurate predictions of permeability and compressive strength even in the absence of experimental data, achieving R2 values of 0.97 and 0.98, respectively. Sensitivity analyses validate the model's alignment with established principles of pervious concrete behavior. By demonstrating the efficacy of machine learning as a complementary tool for optimizing pervious concrete mix designs, this research not only addresses current methodological limitations but also lays the groundwork for more efficient and effective approaches in the field.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Wu, Yinglong | - |
Univ Politecn Catalunya BarcelonaTech UPC - España
Universitat Politècnica de Catalunya - España |
| 2 | Pieralisi, R. | Hombre |
Fed Univ Parana UFPR - Brasil
Universidade Federal do Paraná - Brasil |
| 3 | Sandoval, F. Gersson B. | - |
Universidad Católica del Norte - Chile
|
| 3 | B. Sandoval, F. Gersson | - |
Universidad Católica del Norte - Chile
|
| 4 | Lopez-Carreno, R. D. | - |
Univ Politecn Catalunya BarcelonaTech UPC - España
Grp Construct Res & Innovat GRIC - España Universitat Politècnica de Catalunya - España Group of Construction Research and Innovation (GRIC) - España |
| 5 | Pujadas, P. | - |
Univ Politecn Catalunya BarcelonaTech UPC - España
Grp Construct Res & Innovat GRIC - España Universitat Politècnica de Catalunya - España Group of Construction Research and Innovation (GRIC) - España |
| Fuente |
|---|
| Serra Húnter Programme |
| Catalan agency AGAUR through its research group support program |
| Catalan agency AGAUR |
| Agradecimiento |
|---|
| P. Pujadas wish to acknowledges the support from the Serra Hunter programme. This work was supported by the Catalan agency AGAUR through its research group support program (2021SGR00341) . |
| P. Pujadas wish to acknowledges the support from the Serra Hunter programme. This work was supported by the Catalan agency AGAUR through its research group support program (2021SGR00341). |