Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.37190/PPMP/185759 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Bubble size measurements in aerated systems such as froth flotation cells are critical for controlling gas dispersion. Commonly, bubbles are measured by obtaining representative photographs, which are then analyzed using segmentation and identification software tools. Recent developments have focused on enhancing these segmentation tools. However, the main challenges around complex bubble cluster segmentation remain unresolved, while the tools to tackle these challenges have become increasingly complex and computationally expensive. In this work, we propose an alternative solution, circumventing the need for image segmentation and bubble identification. An Artificial Neural Network (ANN) was trained to estimate the Sauter mean bubble size (D 32 ) based on macroscopic image features obtained with simple and inexpensive image analysis. The results showed excellent prediction accuracy, with a correlation coefficient, R , over 0.998 in the testing stage, and without bias in its error distribution. This machine learning tool paves the way for robust and fast estimation of bubble size under complex bubble images, without the need of image segmentation.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | VINNETT-PERALTA, LUIS EDUARDO | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 2 | Leon, Roberto | - |
Universidad Técnica Federico Santa María - Chile
|
| 3 | Mesa, Diego | Hombre |
Imperial Coll London - Reino Unido
Imperial College London - Reino Unido |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad Técnica Federico Santa María |
| Universidad Tecnica Federico Santa Marfa |
| Agencia Nacional de Investigación y Desarrollo |
| ANID, Project Fondecyt |
| Agradecimiento |
|---|
| <STRONG> </STRONG>Funding for process modelling and control research was provided by ANID, Project Fondecyt 1201335, and Universidad Tecnica Federico Santa Marfa, Project PI_LIR_23_02. |
| Funding for process modelling and control research was provided by ANID, Project Fondecyt 1201335, and Universidad T\u00E9cnica Federico Santa Mar\u00EDa, Project PI_LIR_23_02. |