Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1093/BRAIN/AWAE070 | ||||
| Año | 2024 | ||||
| Tipo | revisión |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Parkinson's disease is a neurodegenerative disorder primarily known for typical motor features that arise due to the loss of dopaminergic neurons in the substantia nigra. However, the precise molecular aetiology of the disease is still unclear. Several cellular pathways have been linked to Parkinson's disease, including the autophagy-lysosome pathway, alpha-synuclein aggregation and mitochondrial function. Interestingly, the mechanistic link between GBA1, the gene that encodes for lysosomal beta-glucocerebrosidase (GCase), and Parkinson's disease lies in the interplay between GCase functions in the lysosome and mitochondria. GCase mutations alter mitochondria-lysosome contact sites. In the lysosome, reduced GCase activity leads to glycosphingolipid build-up, disrupting lysosomal function and autophagy, thereby triggering alpha-synuclein accumulation. Additionally, alpha-synuclein aggregates reduce GCase activity, creating a self-perpetuating cycle of lysosomal dysfunction and alpha-synuclein accumulation. GCase can also be imported into the mitochondria, where it promotes the integrity and function of mitochondrial complex I. Thus, GCase mutations that impair its normal function increase oxidative stress in mitochondria, the compartment where dopamine is oxidized. In turn, the accumulation of oxidized dopamine adducts further impairs GCase activity, creating a second cycle of GCase dysfunction. The oxidative state triggered by GCase dysfunction can also induce mitochondrial DNA damage which, in turn, can cause dopaminergic cell death. In this review, we highlight the pivotal role of GCase in Parkinson's disease pathogenesis and discuss promising examples of GCase-based therapeutics, such as gene and enzyme replacement therapies, small molecule chaperones and substrate reduction therapies, among others, as potential therapeutic interventions.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Rubilar, Juan C. | Hombre |
Universidad del Desarrollo - Chile
|
| 2 | Outeiro, Tiago Fleming | Hombre |
Univ Med Ctr Gottingen - Alemania
Max Planck Inst Nat Sci - Alemania Newcastle Univ - Reino Unido Zent Neurodegenerat Erkrankungen DZNE - Alemania Universitätsmedizin Göttingen - Alemania Max-Planck-Inst. F. S. - Alemania University of Newcastle upon Tyne, Faculty of Medical Sciences - Reino Unido Deutsches Zentrum für Neurodegenerative Erkrankungen - Alemania |
| 3 | Klein, Andres D. | Hombre |
Universidad del Desarrollo - Chile
|
| Fuente |
|---|
| FONDECYT |
| Deutsche Forschungsgemeinschaft |
| Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy |
| Agencia Nacional de Investigación y Desarrollo |
| German ResearchFoundation |
| Agencia Nacional de Investigacion y Desarrollo (ANID)-CHILE: Fondecyt grant |
| Agradecimiento |
|---|
| A.D.K. is funded by Agencia Nacional de Investigacion y Desarrollo (ANID)-CHILE: Fondecyt grant No 1230317. T.F.O. is supported by the Deutsche Forschungsgemeinschaft (DFG, German ResearchFoundation) under Germany's Excellence Strategy- EXC 2067/1- 390729940'. |
| A.D.K. is funded by Agencia Nacional de Investigaci\u00F3n y Desarrollo (ANID)-CHILE: Fondecyt grant No 1230317. T.F.O. is supported by the Deutsche Forschungsgemeinschaft (DFG, German ResearchFoundation) under Germany\u2019s Excellence Strategy\u2014EXC 2067/1- 390729940\u2018. |