Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A two-stage deep learning strategy for weed identification in grassfields
Indexado
WoS WOS:001296854000001
Scopus SCOPUS_ID:85201365352
DOI 10.1016/J.COMPAG.2024.109300
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Machine vision strategies for weed identification, whether in industrial crops or grassfields, are fundamental to the development of automated removal systems necessary to increase agricultural yield and field maintenance efficiency. Identifying plant species considered invasive on grassfields is particularly challenging due to reduced color and morphological contrast, as well as phenotypic variability. This work presents a two-stage weed identification strategy using visible spectrum images. The first stage employs a convolutional siamese neural network to identify candidate regions that may contain weeds of irregular or regular morphology. The second stage employs a convolutional neural network to confirm the presence of irregular morphology weeds. The results of each stage are combined to produce an output containing a per-pixel probability of irregular weed and bounding boxes for the morphologically regular weed. The two-stage strategy has an accuracy score of 97.16% and a balanced accuracy score of 89.94% and macro F1 score of 81.14%. In addition to the good performance scores obtained with the proposed approach, it is to be noted that the convolutional Siamese network allows achieving a good performance with a relatively small dataset compared to other strategies that employ data-intensive training phases for optimizing the convolutional neural networks. The results were obtained with a dataset of weeds that has been made publicly available, as well as the neural network models and associated computer code. The dataset contains samples Trifolium repens and Lectuca virosa on grass obtained with two different cameras under varying illumination conditions and different geographic locations. The lightweight nature of the proposed strategy provides a solution amenable to implementation using currently existing embedded computer technology for real-time weed detection.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Agriculture, Multidisciplinary
Computer Science, Interdisciplinary Applications
Scopus
Agronomy And Crop Science
Computer Science Applications
Horticulture
Forestry
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Calderara-Cea, Felipe - Pontificia Universidad Católica de Chile - Chile
2 TORRES-LEPEZ, MIGUEL ANDRES Hombre Pontificia Universidad Católica de Chile - Chile
Centro Avanzado de Ingeniería Eléctrica y Electrónica - Chile
Advanced Center for Electronics and Electrical Engineering - Chile
3 AUAT-CHEEIN, FERNANDO ALFREDO Hombre Heriot Watt Univ - Reino Unido
Universidad Técnica Federico Santa María - Chile
Centro Avanzado de Ingeniería Eléctrica y Electrónica - Chile
Heriot-Watt University - Reino Unido
Advanced Center for Electronics and Electrical Engineering - Chile
4 DELPIANO-COSTABAL, JOSE FRANCISCO Hombre Universidad de Los Andes, Chile - Chile
Centro Avanzado de Ingeniería Eléctrica y Electrónica - Chile
Advanced Center for Electronics and Electrical Engineering - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Agencia Nacional de Investigación y Desarrollo
National Agency of Research and Development

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This project has been supported by the National Agency of Research and Development (ANID) under Fondecyt 1220140 and ANID FB0008 Basal Project.

Muestra la fuente de financiamiento declarada en la publicación.